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Abstract. We presenl the generalization of the recursion method of Haydock and co-workers 
to systems of many interacting particles. This new method has close similaritia to the memory 
function or Mori formalism. but with some important differences. Heisenberg’s equation for 
the time evolution of a microscopic operator is recursively transformed into a tridiagonal matrix 
equation. This equation resolves the operator into components corresponding to transitions of 
different energies. The projected spectrum of transitions has a continued fraction expansion 
given by the elements of the u i d i a g o d  matrix. We show t h t  for an appropriate choice of 
inner product this density of m i t i o n s  obeys a generalization of the black body theorem of 
eleclromagnetism in that if is exponentially insensitive Lo distant par& of the system. This 
implies hi the projected density of transitions is camputationally slable and can be calculated 
even in macroscopic many-body systems; We argue that the physical content of the density 
of transitions is determined by the nature of its singular points, such as discrete transitions, 
continuous s p m m ,  band edges and van Hove singularitiies. 

1. Extended many-particle systems 

The physical properties of macroscopic systems are often strongly influenced by the many- 
particle interactions among the constituent particles. For example, the rigidity of solids, 
magnetism and superconductivity are all cooperative many-particle phenomena originating 
in the correlations between electrons andor ions in solids. These phenomena are also 
intrinsically macroscopic in nature, since no finite system exhibits true rigidity, magnetism 
or superconductivity at any non-zero temperature. Understanding these phenomena thus 
requires calculations of properties in extended many-particle systems. Unfortunately, for 
macroscopic systems a full quantum mechanical of treatment of the interactions is rarely 
possible. 

Perhaps the worst of the difficulties encountered in extended many-particle systems are 
strong coupling and exponential growth in the density of states. The problem of exponential 
growth is that the number of quantum states in the many-particle Hilbert space grows 
exponentially with the system size. Not only does the total number of states increase, 
but with the total density of states at any given energy also increases exponentially, as 
does the density of states of any given symmetry. The problem of strong coupling is a 
consequence of this exponential density of states. For any finite strength of the many- 
particle interaction, there are an exponentially large number of states with energies less 
than the perturbation strength. Any non-interacting unperturbed state will therefore have 
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exponentially small overlap with the true interacting particle state, a phenomenon often 
known as the orthogonality catastrophe. This implies that, in general, perturbation theories 
will have zero radius of convergence, and useful results can only be obtained by selectively 
summing infinite classes of diagrams. Many modem methods havc been developed to 
overcome these difficulties, including exact numerical solutions in finite systems using 
quantum Monte Carlo [1,2] or exact diagonalization Lanczos [3] methods, renormalization 
group methods [4,5]. and conserving approximations [6]. While much progress has been 
made, each of these methods has both advantages and disadvantages, and no single method 
is adequate to address all the problems of physical interest. 

The purpose of this paper is to identify a physical quantity that is computable 
mathematically and physically stable even in an infinite many-body system. We shall 
call this quantity the projected density of transitions (or PDOT), denoted by p ~ ( w )  where 
Q is a microscopic operator. For a wide class of many-body models this quantity has 
the very useful property that it is exponentially insensitive to the distant parts of the 
system or the boundary conditions. The proof of this property is given below, and is 
essentially an extension of the von Laue black body radiation theorem [7] to the Heisenberg 
equation of motion. Mathematically, the proof is based on the solution of the classical 
moment problem [SI, which is equivalent to the solution of a wave equation. The PDOT is 
physically somewhat analogous to the familiar projected density of states (PDOS) of non- 
interacting systems, and its computation is essentially the natural extension of the recursion 
method of Haydock and co-workers [9,10] from non-interacting to many-particle systems. 
Unfortunately the physical interpretation of the PDOT is less straightforward than for the 
PDOS. We argue below that the singularities in the spectrum of the PDOT correspond to the 
thresholds for creating long-lived elementary excitations of the many-body system, and are 
thus physically meaningful quantities. 

The method that we present in this paper has close similarities to the well known 
Mori formalism, or memory function method, developed in [ll-141. In this method the 
Liouville superoperator, L = [H, 1, is used to provide a compact representation of the time 
evolution of operators under Heisenberg’s equation of motion. The Heisenberg equation of 
motion is transformed into a tridiagonal form, from which a continued fraction expansion is 
constructed. In our method we also tridiagonalize the Liouville superoperator and construct 
a continued fraction representation of the spectrum. The principal differences between our 
method and the Mori approach are in the choice of an inner product for the Hilbert space of 
operators, and in the physical interpretation of the specr”. Another important difference 
is that our main results apply only to the dynamical evolution of local or microscopic 
operators, which we show can be evaluated even in extended or macroscopic systems. The 
black body theorem, which is the central result of this paper, applies only to local operators 
with our choice of inner product and is not !me in the more usual Mori formalism. 

The paper is organized into seven further sections. The first of these sets the scene by 
describing the aspects of the Heisenberg picture that are relevant to what follows, introducing 
Heisenberg’s equation and presenting its formal solution. The next section describes the 
black body theorem. In section 4 there is a discussion of the representation of operators 
and the choice of inner product for operators. Section 5 contains our key results, giving a 
detailed description of the recursive solution of Heisenberg’s equation. In section 6 there 
is a discussion of some simple illustrative examples. Finally, in section 7 we discuss the 
interpretation of the projected density of transitions for a general interacting system, and 
section 8 presents some conclusions. 
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2. The Heisenberg picture 

The two conceptual ingredients of quantum mechanics are the states, or wavefunctions, and 
the observables, or operators, such as velocities and positions. In describing the evolution 
of a system, the time dependence of physical quantities, which are the expectation values 
of the observables with respect to the states, can be distributed between the states and 
the observables in any way. The first important point we make is that for numerical 
computations in extended many-body systems the Heisenberg picture is considerably more 
convenient than the Sckiidinger picture. 

In the Schriidinger picture’ the time-dependent Schrodinger equation bas the familiar 
formal solution: 

@ ( t )  = exp(-iHit)@(O) (1) 

(in units in which fi  = 1). The difficulty with this equation in extended many-body systems 
is that the Hamiltonian I? is proportional to the system size, and therefore the dominant 
frequencies contained in a general wavefunction are also proportional to the system size. 
For example, we can define a formal density of stam projected on any state @(O): 

(where E is a positive infinitesimal) but this is not a useful quantity. The reason is that 
successive moments of this projected density of states grow as powers of the system size, 
and therefore the projected density of states possesses no well defined moment or continued 
fraction expansion, in contrast to the single-particle density of states. This is anoher 
example of the orthogonality catastrophe, since no finite-energy eigenvector of H ,  such as 
the ground state, has any finite overlap with any given trial state @(O). The non-existence 
of the moment expansion for the density of states projected on @(O) is also equivalent to 
the statement that the Taylor series for the time dependence of @ ( t )  has zero radius of 
convergence, since in 

(3) 

successive terms grow with powers of the system (which might be infinite), and hence the 
solution in (1) is purely formal in infinite systems. These problems make it necessary to 
carry out computations only in finite-size systems and then take the thermodynamic limit 
by finite-size scaling at the end of the calculation. 

Now let us contrast this behaviour with the Heisenberg picture. In the Heisenberg 
picture the time dependence is transferred from the wavefunctions to the operators with the 
usual time dependence: 

+(i )  = 11 - iHt + (-iHr)’p + . . .]@(0) 

- 1- = [ H ,  Q(t)J.  
d t  (4) 

Since the above commutation of H with Q(t)  is a linear transformation of the operator 
Q(t) ,  it may be Written in terms of a superoperator, L, called the Liouvillian [I51 

LX = [ H ,  XI 

for any operator X. The Liouvillian is a superoperator since it is a linear transformation 
acting on the space of observables or operators rather than on the space of wavefunctions. 



6458 

If the Hamiltonian is time independent, then the Liouvillian is also time independent and 
Heisenberg’s equation of motion has the formal solution 

Q(t) = exp(iLt)Q(O). (6) 
Since Heisenberg’s equation is first order its formal solution contains one constant operator, 
namely Q(0). 

This formal solution of Heisenberg’s equation shows that the frequencies present in 
Q(t)  are just the eigenvalues or, more precisely, the invariant values of the Liouvillian 
for the various components of Q(0). The magnitudes of these frequencies can be simply 
estimated by the growth of Q(0) as it is multiplied by successive powers of the Liouvillian. 
A little experimentation with different Hamiltonians shows that when Q is a single-particle 
position, momentum or other variable, these frequencies are characteristic of the binding 
energies of that particle. When Q involves several particles, its frequency is characteristic 
of the energy of the several particles. Therefore the characteristic frequencies in (6) are 
independent of the size of the system, and hence microscopic. This is quite different from 
the Schrodinger picture, where the characteristic frequencies are proportional to the size of 
the system and hence macroscopic. We shall prove below that the characteristic frequencies 
in the Heisenberg picture remain microscopic for a wide range of interesting many-body 
Hamiltonians, and that this implies that the time evolution of operators possesses a number 
of useful convergence properties. 

J F Annett et a1 

3. The black body theorem 

Wave equations have the property that the density of modes at one position is exponentially 
insensitive to distant disturbances. This is called the black body theorem because it explains 
why black bodies emit a spectrum of electromagnetic radiation that is independent of the 
black body’s shape or material. Even in electromagnetism, this theorem is surprising 
because, while it is plausible that the spectrum should be insensitive at wavelengths much 
shorter than the scale of any feature of the black body, different materials do have different 
optical properties and yet the spectrum is insensitive to this as well. The qualitative 
explanation is that in thermal equilibrium the spectrum is determined by the normal modes 
of the cavity, rather than by the nature of the walls. Weyl [16] showed that the total density 
of modes is independent of the shape of the cavity, provided its dimensions are all much 
greater than the wavelengths under consideration. Von Laue [7] went on to show that at 
any point inside the cavity the density of normal modes at a particular frequency depends 
on the walls to a degree that decreases exponentially with the number of wavelengths (at 
that frequency) to the nearest wall. 

Friedel [17] later argued that the black body theorem also applies to the local density of 
states of the one-electron Schrijdinger equation (see Heine 1181 for a commentary on this). In 
one-electron quantum mechanics, the electronic wavefunctions replace the elec@omagnetic 
modes, and the probability density for finding an electron at a given point with a given 
energy replaces the local density of normal modes. The underlying principle is the same, 
namely that a change in the material at a distance of several wavelengths affects only the 
phase, and not the amplitude of the wavefunctions averaged over a small range of energy. 

The general form of the black body theorem establishes the local density of modes as 
a stable physical quantity in systems described by wave equations. The local density of 
modes at r is given by 

P(V,@) = ~ l ( r l ~ ; i ) l 2 S ( @ - w ; )  (7) 
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where +i is the eigenfunction (whether electromagnetic or Schr6dinger) with frequency mi. 
It follows from the properties of the wave equation that the local density of modes averaged 
over a small range of frequency changes by an amount that decreases exponentially with the 
distance measured in wavelengths from some disturbance. In contrast, the normal modes 
themselves are known to be highly sensitive to distant disturbances in the system. 

Like Maxwell’s and Schrodinger’s equations, Heisenberg’s equation is an example of 
a linear wave equation. However, in this case the waves are operators. The normal modes 
of the Heisenberg equation are the operators with harmonic time dependence 

Y&) = Y, exp(iw.t) (8) 

where Y. is an invariant or eigenoperator of the Liouvillian satisfying 

LY, = waya. (9) 

From the definition of the Liouvillian it is easy to see that its invariant operators, Yo, have 
the form of transitions among the different eigenstates of the Hamiltonian: 

Ye = l+i)(qjl (10) 

0. = Ei - Ej 

with 

(11) 

where 

Hlh) = Et le t )  (12) 

and the 1qi.i) are the many-body eigenstates of the system with energies Ei. 
In order to extend the black body theorem to Heisenberg’s equation, the idea of the 

local density of modes must be generalized to something that describes a local property 
of the invariant operators in the above equation. To do this we must instead introduce 
some notion of locality for an operator. We shall call an operator local if it only acts on 
or changes occupation numbers in a finite region of space. For example, the real-space 
electron creation and annihilation operators, ‘density operators and so on are familiar local 
operators. The importance of local operators has also been emphasized by Fulde [ 191 in a 
slightly different context. 

Secondly, we must resolve a local operator into components at different frequencies. 
Operators combine linearly, just as waves do, so a component of an operator is a projection 
of one operator on another. To establish projection among operators we must introduce an 
inner product, (X, Y ) .  on the space of operators (not to be confused with the inner product 
of states (+I@)). Specific choices of inner products are discussed below in section 4. Given 
a local operator, say Q, and an inner product ( , ) it is natural to define the following 
projected density of modes: 

6’Q(m) = ~ I ( e - Y a ) 1 2 ~ ( ~ - % ) .  (13) 

Since the eigenoperator Y. is a solution to the wave equation, this projected density of 
modes is nothing more than the local intensity of each mode. This idea of a projected 
density of modes is the natural extension of the familiar local density of states of (7). Since 
the eigenoperators Y. correspond to transitions among eigenstates, we shall refer to P Q ( W )  
as the projected density of transitions (PDOT). It is the centlal quantity in all the main results 
of this paper. 

L1 
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The general form of the black body theorem is that the average of the local density of 
modes over a localized test function is exponentially insensitive to distant disturbances in 
the system. We shall prove below that the PDOT for Heisenberg's equation obeys the black 
body theorem provided that the operator or test function in the projection is localized. 
The black body theorem then says that any frequency average of the magnitude of the 
component of the localized operator in each mode is exponentially insensitive to changes in 
the Liouvillian that are many wavelengths distant. The proof of the black body theorem for 
Heisenberg's equation follows from the convergence of the continued fraction expansion of 
the projected density of transitions. The development of this main result is the subject of 
the next two sections. 

4. Inner products and representation of operators 

For Heisenberg's equation the black body theorem applies to the projected density of normal 
modes which requires the definition of an inner product between some localized operator 
and the normal modes. In other words, we need to define an inner product on the space 
of operators, ( X ,  Y ) .  This product should obey the usual rules for inner products, such as 
( X ,  Y )  = (Y, X)*. The most important requirement that the inner product must satisfy is 
that the Liouvillian superoperator should be Hermitian: 

(X, LY)  = (LX, Y ) .  (14) 

To see why this is necessary let Q(0) be some localized operator that evolves into Q(t )  
according to the exponential of the Liouvillian L. The projection of Q(f) onto Q(0) 
is the inner product Cp(1) = ( Q ( O ) ,  Q(t)) = (Q(O).d"'Q(O)). If the physical system 
described by this Liouvillian is invariant under time translations, then the correlation 
between Q at two different times must also be invariant under time translations, or 
(Q(t'), Q(Q) = (eiL"Q(0), e'"'Q(0)) = C,(t - t'), which is clearly satisfied if L is 
Hermitian. At least L must be Hermitian in the subspace of operators spanned by Q(f). 

The most general inner product for which the Liouvillian is Hermitian is a weighted 
trace of X i  and Y over eigenstates of the Hamiltonian, i.e. 

(x, Y )  = ~ w ~ j ( ~ i I X + I ~ j ) ( ~ j I y I ~ i )  (15) 
where the weights wij must all be real to fulfill the conjugation condition, (X, Y )  = (Y, X)', 
but are otherwise arbitrary. This class of inner product leads to a Hermitian Liouvillian, 
since 

(LX, Y )  = Cwij(hI(HX-xH)+~~j)(~j~yI~~) (16) 

= (X, LY) .  (18) 

Within this general form for the inner product there are a variety of possible choices. 

= ~ w i j ( ~ ~ I X t I ~ j ) ( ~ j I ( X y  - YX)I+i) (17) 

For example, the Kubo inner product is usually used in the Mori formalism 111,201: 

1 B  
(X, Y ) K  = z l  dA((Xt(-iA)Y(0))) (19) 

where X(-ih) is the time-dependent operator analytically continued to the imaginary time 
axis and (( )) denotes a thermal expectation value at temperature T = 1 /keB in the canonical 
ensemble. The Kubo inner product has the physical interpretation that it yields the static 
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change in ((X)) when the Hamiltonian is perturbed infinitesimally hy Y at temperahue 
T [21]. It corresponds to the weight function 

Although the Kubo form of the inner product has a number of useful features, it does not 
allow us to prove the results we are seeking. In particular, there is no black body theorem 
for the PDOT when the Kubo form is used. The problem is that the thermal expectation 
values in (19) do depend on distant parts of the system. For example, if the system passes 
through a second-order phase transition the system becomes correlated over arbitrarily long 
length scales, and thermal expectation values of operators are sensitive to arbitrarily distant 
perturbations. 

Another possible choice of inner product corresponds to the case in which all the states 
are weighted equally [15,22]. This inner product could be called the infinite-temperature 
inner product, since. it corresponds to P + 0 or constant wij. This inner product is also 
known as the trace product, or trace norm, since it becomes simply 

(X, Y) = Tr(x+Y)/Tr(I) (21) 

where Tr denotes the trace of a matrix or operator, and I is the identity operator. The 
normalization factor l/Tr(I) is not necessary, but is convenient for actual calculations since 
it ensures (I, I) = 1. The trace norm has the important property that if X and Y are local 
operators only acting in some limited region of space, then the trace norm can be easily 
computed solely within that region. The trace norm of two local operators is therefore 
completely insensitive to distant parts of the system, unlike the Kubo inner product. 

To give a concrete example, suppose that our system has a basis of localized single- 
electmn Wannier orbitals, atomic spin-orbitals on the sites of a crystal lattice, for example. 
Let cl. ci, . . . be electron creation operators that add particles to orbitals 1,2 , .  . . etc, and 
which have the usual anticommutation rules: 

Assuming that the Wannier orbitals are orthonormal, it is simple to show that the trace norm 
inner products of the creation and annihilation operators are 

(Ci, cm) = (cn, CL) = 0. (24) 

The operators at site n are orthogonal to the operators at all other sites, and hence the trace 
norm can be evaluated solely in the region of space containing site n. 

The full trace norm is not the only inner product that can be used here. For example, if 
the trace is restricted to a subspace of the Hamiltonian corresponding to a given symmetry 
sector, then again a Hermitian Liouvillian is obtained. Trace products with a given particle 
number or total z-axis spin are also simple to implement. The only absolute requirements 
we need below are Hermiticity of the Liouvillian and the locality of the inner product of 
two local operators, and any inner product that satisfies those conditions can be used. 
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5. Recursive solution of Heisenberg's equation 

We are now in a position to derive the central result of this paper, namely the black body 
theorem for the projected density of transitions. The proof is developed in two stages: first, 
we show that Heisenberg's equation of motion for a local operator has a Taylor series with 
a finite radius of convergence; second, we argue that the moment expansion of the P W T  
can therefore be represented by a continued fraction expansion. The continued fraction is 
generated by a straightfoward recursion, which is used to prove the black body theorem. 

The formal solution of Heisenberg's equation in terms of an exponential of the 
Liouvillian (6) suggests a power series in time, which may or may not have a finite radius of 
convergence. For a localized operator Q(0) consider a single component of e(?), namely 
its projection back onto Q(0): (Q(O), Q(t)) .  By expanding the exponential of L in a power 
series, this component can be written as 

J F Annen et al 

(25) 
i" 

3! n!  
C Q ( ~ ) P ( Q ( O ) ,  =qo+iq1t-$qzt2+-q3t -1 3 +...+-q, t"+ ... 

where the coefficients are the moments of L on Q(0): 

qn = tQ(o), L"Q(0)). (26) 

For Heisenberg's equation to make sense the above power series must converge, at least for 
some finite interval of time, however small. From the usual criteria for convergence of a 
power series, the above expansion for cQ(t) converges absolutely from time zero to some 
positive time t, provided that the moments grow no faster than n!/z".  Of course, this does 
not imply that the time evolution of Q(t) becomes singular at time r, but just that there is 
a singularity in the complex t-plane at a distance t from the origin. 

The proof of convergence of the power series in time follows from power counting 
the moments qn. Suppose for simplicity that we start with a single creation operator at 
some lattice site for the initial operator Q(0). Suppose also that each action of L on a 
creation or annihilation operator produces at most Z new terms. For example. Z will 
reflect the coordination of the lattice and so on. We also assume that there are only two 
particle interactions, so that Lct can produce strings of no more than three new creation 
and annihilation operators. We can then see that LQ(0) contains no more than Z terms, 
each with three or fewer creation or annihilation operators. Now using the operator identity 

L(XY . . . 2) = (LX)Y.. . z + X(LY) . . . z + . . . + XY.. . ( L Z )  (27) 

we can see that applying L to LQ(0) we can obtain at most 3Z2 terms, which can 
contain at most five creation or annihilation operators. Repeating this process iteratively 
we can see that L"Q(0) contains at most 1.3.5.. . . .(2n - 1)Z" terms containing up to 
1.3.5.. . . .(Zn+l) creation and annihilation operators. If M is the maximum matrix element 
for L acting on any single creation or annihilation operator, then the moment q. cannot 
exceed 1.3.5.. . . .(2n - l)(ZM)" - n!(2ZM)". This bound is just sufficient to prove that 
the Taylor series has a finite radius of convergence, 7,  since by the ratio test the series 
must converge absolutely when It1 c 1 /2ZM.  Note that we are not saying that the power 
series certainly diverges for t > 1 /2ZM,  but simply that the radius of convergence is at 
least 1 /2ZM.  The radius of convergence may be larger, or even infinite, in some special 
cases. Clearly the proof can be generalized to any skating operator Q(0) that is a finite 
combination of creation and annihilation operators, and hence to any localized Q(0) in a 
fermionic system. For bosons, even a localized operator may contain infinitely long products 
of creation and annihilation operators, and so it is necessary to make the further restriction 
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that all such products must be finite. We must also assume that the Hamiltonian does not 
include any singular or long-ranged potentials, so that the matrix elements remain bounded 
by M. and Z is finite. This requirement is satisfied by a large number of model many-body 
Hamiltonians, such as Heisenberg and Hubbard models, but does not allow for long-ranged 
Coulomb interactions. Singularities in cQ(t) may arise when Q(0) is delocalized, or when 
there are singular or long-ranged potentials that give the frequency spechum of C Q ( ~ )  
weight at high frequency. This weight at high frequency means that C Q ( ~ )  goes to zero 
very rapidly, which is the same thing as saying that the excitation created by Q(0) runs 
rapidly away to infinity. 

The time evolution of the operator Q(t)  is most conveniently represented in the 
frequency domain. The Fourier transformation of Heisenberg's equation is algebraic and its 
solution is the resolvent of L applied to Q(0) [U]: 

1 
0 - L  

R(w) = -Q(O) .  

In terms of R(o), the solution of the original equation is 

where the integral is taken around a contour in the complex o-plane that encloses the poles 
of l / (o  - L). These poles must lie on the real axis since L has real eigenvalues. The 
resolvent R(o) thus contains the same dynamical information about the time evolution of 
the operator Q(f) as the original Heisenberg equation. In particular,, R ( o )  resolves the 
operator Q(t)  into its component transitions at different frequencies. 

The analytic properties of the frequency spectrum are most easily studied by examining 
a single matrix element of the resolvent, the diagonal Q(0) element of the resolvent: 

This provides a convenient representation of the time evolution of C&) by the Fourier 
integral ' 

where again the integration is over a contour that encloses, but does not intersect, the 
spectrum of the poles of Re(@) on the real axis. Comparing this representation of C Q ( ~ )  
with the Taylor series (25) we see that the moments of the Liouvillian, qn, are equal to the 
frequency moments of Re@): 

Introducing the projected dens@ offransitions (PDOT), pe(w), as the imaginary part of 
the resolvent for frequencies infinitesimally below the real axis 

we see that p ~ ( o )  is a real and positive function. To see that this corresponds to the original 
definition of (13) simply evaluate the resolvent (30) on the basis of the invariant operators 
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of L from (9) and use the usual identity (strictly valid only within an appropriate integral): 
N / ( x  - ic) = a&(x ) .  Furthermore, the moments of p ~ ( o )  are also given by the 4": 

J F Annett et a1 

where the integration is along the real axis. The bound that the moments grow no faster 
than n!(2ZM)" implies that the function p ~ ( m )  decays at least exponentially for large w: 

P Q ( ~  = O(exp[--l4/(2ZM)I) (35) 

as IwI + CO. For a general macroscopic many-body system the spectrum of transitions 
will not be bounded, since there are transitions among many-body states of all macroscopic 
energies; however, the exponential decay of the projected density of transitions shows 
that the spectrum does not behave 'too badly' at infinity, provided the operator Q(0) is 
local. Using this bound on ~ Q ( o )  it is clear that (31) converges for all times, f ,  and can 
thus be viewed as the analytic continuation of the Taylor series (U) beyond its radius of 
convergence. 

We have now shown that the density of transitions ~ Q ( O J )  projected on a local 
operator is a positive real function with moments given by the moments of the Liouvillian 
q. (Q(O) ,  L"Q(0)). which can be calculated in a finite number of computational 
steps. However, the representation of a function in terms of its moments is notoriously 
ill conditioned. For example, a small error in a moment q,, due to computer rounding error 
could result in a large change in the value of pp(w) at any specific frequency w. A much 
better behaved representation is provided by a continued fraction representation. First we 
expand the diagonal matrix element of the resolvent: 

40 41 42 4" 
w 0 2  

RQ(W) = - f - f - w3 . . . - ~ + 1  + ~. . . . 

This is now an asymptotic expansion around infinity and seems even less convergent than 
the power series in time. However, because RQ(OJ) has all its singularities on the real w-axis 
and because they all have positive residues, which follow from conservation of probability 
by the Hamiltonian, this series can be summed by a continued fraction of the Jacobi type [8]. 
The continued fraction converges absolutely for all w off the real axis: 

where the parameters of the continued fraction [an, bn} are all real, and may be related to 
the moments by expanding the continued fraction as a power series in l/w. The continued 
fraction expansion has the strongest convergence properties of all the series discussed here. 
In particular, outside its spectrum the continued fraction converges exponentially. 

The parameters in the continued fraction expansion {an, bJ can calculated from the 
moments (which is ill conditioned) or by a duect extension of the recursion method [9,10] 
to Heisenberg's equation of motion. The original Schriidinger equation recursion method 
constructs an orthonormal sequence of states [KO, u1, . . . , U,, . . .) such that the Hamiltonian 
is successively transformed into a hidiagonal form under the recursion: 

Hun = a,u, + bn+lu,+l + b,u,-l. (38) 
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The application of the recursion method to Heisenberg's equation constructs a basis of 
orthonormal operators [U,, U], . . . , U", . . .) in which the Liouvillian superoperator is a 
tridiagonal matrix. In other words, the recursion expresses the Liouvillian as a three-term 
recurrence: 

(39) 

This recurrence generates a sequence of operators [Un] which are orthonormal with respect 
to the inner product: 

LU,, = a.U. + b.+lUn+l + bJJ-1 n > 0. 

um) = &,m. (40) 

an = (Un, LUd (41) 

V,+I = LU, -a,U,, - b,U,-I (42) 

The operators U. are generated by iterating the algorithm 

(43) bn+i = ( V ~ + I ,  vn+l) 

U ~ + I  = Vn+1/4+1 (44) 

2 

starting the recurrence with U-1 = 0 and U, = Q(O)/bo, the normalized local operator 
Q(0) with bi = (Q(O), Q(0)). By construction this recurrence ensures that (Un, Un+l) = 0 
and using the fact that L is Hermitian one can prove by induction all the operators {Un] are 
orthonormal. In the basis of the operators {Un] the Liouvillian superoperator is represented 
by a symmetric tridiagonal matrix. The matrix Jnm = (Un, LU,) has the [an) along the 
main diagonal and the [b"} along the first upper and lower subdiagonals with the rest of the 
matrix elements zero. Finally, the resolvent element (U,, l/(o - L)Uo) can be expressed 
in the orthonormal basis of the {Un) and corresponds to the leading diagonal element of the 
inverse of the hidiagonal matrix oZ - J: 

(45) 

This hidiagonal matrix inverse can be computed easily, and corresponds to the continued 
fraction (37) apart from the trivial normalization constant bo'. The coefficients (U", bn] 
generated by the recursion are therefore exactly the same parameters that appear in the 
continued fraction representation of the resolvent element Re(@). The resolvent and PDOT 
can therefore be computed directly by the recursion (44). All of these results are simply 
equivalent to the usual recursion method results [IO], except that the orthonormal states U, 
are replaced by the orthonormal operators U. and the Hamiltonian operator is replaced by 
the Liouvillian superoperator. 

The above paragraphs complete the derivation of the main results of this paper, so 
let us now summarize and discuss the implications of these results. The result has been 
to show that, starting from a local operator Q(O), it is possible to tridiagonalize the 
Liouvillian superoperator. The tridiagonalization gives the coefficients in the continued 
fraction expansion of the projected resolvent Re(@).  The continued fraction converges 
absolutely and exponentially for all o off the real axis, because it corresponds to a well 
defined moment expansion. The bounds on the moments ensures that the PDOT pp@) 
has at least an exponentially decaying spectrum at large frequencies. The existence of the 
Liouvillian tridiagonalization has been known since the work of Mori [ll]; however, the 
proof of its convergence relies explicitly on the locality of the operators and inner product 
and has not been given before to our knowledge. 

(U@, I/(@ - L)U,) = [(or - J)-l]w. 
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We are now, finally, in a position to demonstrate the important physical result that the 
PDOT p ~ ( w )  is exponentidly insensitive to distant parts of the system, i.e. that it obeys 
the black body theorem. The proof is very straightforward using the machinery we bave 
assembled above. We have already said that at any o off the real axis the continued 
fraction expansion of RQ(OJ) converges exponentially. This means that the changes in 
R Q ( ~ )  induced by perturbing or truncating the continued fraction at the nth level decrease 
exponentially as n increases. Now, the coefficients of the nth level of the continued fraction 
are obtained from the operators U, and U"-,, which are in turn linear combinations of Q(O), 
LQ(O), . . ., L"Q(0). But if there are no long-ranged interactions or hopping terms in the 
Hamiltonian, then these operators are local and will only act within a finite radius (of order 
n )  of the region where the initial local operator Q(0)  acts. The continued fraction up to 
order n is thus completely insensitive to the system beyond this radius. Therefore R Q ( ~ )  
slightly off the real axis is exponentially insensitive to distant parts of the system. Finally, 
since the PDOT is simply the imaginary part of Re(@) evaluated slightly off the real 
axis it too is completely insensitive to distant parts of the system. Alternatively, by aHilbert 
transform 

integrating along the real axis, RQ(w) slightly off the real axis, say with imaginary part 
E ,  depends on a Lorentzian weighted integral of p ~ ( o )  over a range of frequencies of 
width E .  Therefore, if RQ(OJ) is exponentially insensitive to the distant parts of the system, 
then integrals of pa(@) over small regions must also converge. This completes the proof 
of the black body theorem for the Heisenberg equation. Notice that ~ Q ( w )  converges in 
quadrature, but not necessarily point by point on the frequency axis; this is exactly the same 
as the black body convergence for electromagnetic or Schradinger wave equations [23]. 

6. Examples 

6.1. Non-interacting electrons 

As a first simple example of the Liouvillian recursion method we shall show that for 
non-interacting electron systems the method becomes identical to the ordinary recursion 
method [9, lo]. Consider the electronic Hamiltonian 

H = HijC!&j, (47) 

where c ! ~  and cj. create and annihilate spin-o electrons in local orbitals i and j respectively. 
Hij is a single-particle Hamiltonian, which contains diagonal site energies and offdiagonal 
hopping terms. 

We choose a stating operator for the recursion that adds a particle at some site, say 
0 U ,  = &c&. The factor of I /z is chosen to ensure the normalization (Uo, U,) = 1 
using the fermion operator inner products given above in (24). It is simple to see from the 
fermion commutation rules that 

L C i T  = Hi0Cit (48) 

and therefore the action of the Liouvillian is to move the electron to neighbouring sites. 
Similarly, after n actions of the Liouvillian: 
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Using the trace norm inner product defined above we find the moments: 
(Uo, L'Uo) = HojHjk.. . H,o = [H"](lo (50) 

identical to the Hamiltonian moments. It is clear from this example that the Liouvillian 
continued fraction coefficients [a,,b,} are identical to the ordinary recursion method 
continued fraction coefficients that would have been obtained by recursion with the 
Hamiltonian matrix acting on a normalized state, uo at site 0. 

This result implies that for non-interacting systems the Liouvillian recursion starting with 
a single creation operator becomes identical to the conventional Hamiltonian recursion. The 
PWT therefore becomes identical to the ordinary singleparticle density of states projected 
onto orbital 0 and spin up. This provides a simple example, which will aid in interpreting 
the physical meaning of the PDOT. The PDOT is a weighted density of transitions among 
many-body eigenstates. In the case when cl0 is a single-particle creation operator these 
are transitions between the spaces of many-body states of N and N + 1 particles. The 
PDOT picks out the density of these transitions at each frequency, which for non-interacting 
systems is just the single-particle projected density of states. 

A related example, which shows how the Liouville recursion method goes beyond 
the usual Hamiltonian formulation, is the Bogolibov-de Gennes Hamiltonian of a 
superconductor: 

The many-body eigenstates of this Hamiltonian are subtle since they do not have a definite 
particle number because of the non-zero gap function Atj. However, the Hamiltonian can be 
diagonalized straightforwardly by Bogolibov transformation. Using the Liouville recursion 
exactly as outlined above, and a starting operator such as U0 = fic:,,  one immediately 
computes the spectrum of the Bogolibov quasipdcles [24]. Since. these quasiparticles are 
non-interacting the PDOT is again equivalent to the projected density of states. However, in 
this case the transitions that diagonalize the Liouvillian are linear combinations of ct and 
c operators. Hence they are not transitions between many-body stam of definite particle 
numbers, but are transitions that create or destroy Bogolibov quasiparticles. 

6.2. Finite system 
Another simple but instructive example is provided by systems for which the many-body 
Hilbert space has finite dimension. For example, the finite-size clusters of Hubbard or 
Heisenberg model many-body systems that are studied with exact diagonalization techniques 
fall into this category [3]. For a system with a finitedimensional Hilbert space we can 
simply enumerate the set of basis states, say I@;), for i = 1, N .  The Hamiltonian and 
other operators are just finite N x N matrices. With any normalized starting matrix U0 we 
may use the Liouvillian recursion to generate a sequence of orthonormal matrices, UI, UZ, 
etc. Since there are at most NZ possible orthonormal matrices the recursion must terminate 
(bn = 0) after a finite number of steps (ignoring numerical rounding errors). The continued 
fraction for this system is thus finite, corresponding to a PDOT p ~ ( @ )  given by a set of up 
to NZ delta functions: 

H = H i j o ~ j a ~ j a  + A i j ~ ~ ~ c ~ - ~  4- A G ~ j - ~ c i ~ .  (51) 

PQ(@) =cwd(@-%). (52) 
D 

Again the interpretation of this result is clear. For a finite system there are N many- 
particle eigenstates with energies Ei, and thus a total of N2 possible transitions with 
frequencies o, = Ei - Ej .  Whatever starting operator, U,, or inner product (,) are 
chosen the PDOT will correspond to a weighted sum of these different transition frequencies. 
Different starting operators or inner products can merely change the weights of the various 
transitions, wa. 
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6.3. Heisenberg and Hubbard models 

Since it is explicitly local the Liouvillian recursion can be easily carried out in lattice 
models, such as the quantum Heisenberg or Hubbard models. These models are especially 
important cases since conventional methods, such as many-body perturbation theory, are 
generally not useful because of strong coupling. 

For example, in the Heisenberg model 

J F Annett et al 

there are (2s + 1)’ possible operators for each lattice site. For the case of spin f there are 
four, conveniently chosen as the identity, I, and the Pauli matrices U;. It is readily verified 
that these are an orthonormal set under the trace norm [22]. A general operator is a linear 
combination of products of these four basis operators. By definition a local operator is one 
that differs from the identity only within a finite region of space. Equivalently, it is one 
that is a non-identity at only a finite number of sites. Clearly, if Q is a local operator, the 
LQ is also local since the Hamiltonian only connects neighbouring sites. 

For a specific example, consider taking a normalized starting operator at the origin, 
U0 = “or, we obtain: 

and hence al = 0, bl = J m  and 

where Z is the lattice coordination number. Notice that a1 and b1 are completely insensitive 
to the dimensionality of space or other details of the lattice topology except its coordination 
number, an example of the extreme locality of the Liouvillian recursion. The iteration is 
readily repeated by hand for a few terms, or on a computer for several more continued 
fraction levels. For example, analytic solutions to some related spin models have been 
derived by Florencio and co-workers t25.261, while high-order moments have been derived 
numerically for the onedimensional Heisenberg model [27,28]. 

Similarly for the Hubbard model 

there are sixteen basis operators per site composed of products of dei, z/zc,, I and 
( I  - 2n,) for each spin. Again these are orthonormal under the trace norm. Starting with 
a single creation operator at the origin, U0 = fic&, we obtain 
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For both Heisenberg and Hubbard models the recursion can be carried out numerically 
until the number of operators in a given U, fill the available computer storage. For example, 
on a computer the basis operators for the Heisenberg model can be represented as integers 
in base 4, where the ith digit represents the four possible operators at site i. The Heisenberg 
model commutators act to simply flip bits in these integers. As successive commutators are 
computed the number of operators that must be retained grows exponentially. The number 
of terms that can be obtained exactly depends on the Hamiltonian and lattice coordination. 
Making use of efficient storage schemes the typical l i t  is about IO7 terms on modern 
computers. For the one-dimensional Heisenberg Hamiltonians this l i t  is reached at the 
15th recursion level (or 30th moment) [27]. 

Beyond this computational limit there are a number of possible courses of action. (i) It is 
often possible extrapolate the recursion coefficients {am, b.) by estimating their asymptotic 
behaviour, or making use of exact asymptotic properties where they are known. This 
amounts to choosing an appropriate terminating function for the continued fraction [29]. 
(i) It may be possible to solve a related model, Ho, analytically (for example the x-y spin 
model 1251 or U = 0 Hubbard model are analytic) and then use recursion perturbation theory 
to extract the recursion coefficients of Ho + AV in powers of A [lo]. This method proved 
very powerful in the recursion theory of Anderson localization [30]. (iii) It is possible to 
numerically truncate the number of terms that are retained during each iteration, which is 
called dynamic recursion. Because of the exponential insensitivity of the PDOT to distant 
perturbations such truncation errors are relatively unimportant for practical purposes, just 
as numerical rounding error does not degrade the projected density of states in the ordinary 
recursion method [31]. 

7. Interpretation of the projected density of transitions 

The above discussion shows that the projected density of transitions (PDOT) is stable with 
respect to changes in distant parts of the system and that it can be calculated recursively 
by tridiagonalizing the Liouvillian in a basis of orthonormal operators. It remains to show 
how the physical properties of the system may be extracted from this calculation. 

One simple interpretation of the PDOT is that it corresponds to a thermodynamic 
dynamical correlation function, evaluated in an infinite-temperature ensemble. It has been 
known since the work of Mori I l l ]  that timedependent correlation functions have continued 
fraction representations that can be generated recursively. The inner product that must 
be used is the Kubo inner product at temperature T discussed above. However, the 
Kubo norm becomes identical to the trace norm as the temperature becomes infinite, and 
thus the PDOT can be interpreted as a time-dependent correlation function in an infinite 
temperature canonical ensemble. This correspondence of the PDOT with infinitetemperature 
dynamics can be seen clearly by representing the PDOT explicitly in terms of the many-body 
eigenstates: 

A finitetemperature correlation function would require additional Boltzmann factors of 
in the sum, as occur when the Kubo inner product is used. Since finite-temperature 

Kubo products are difficult to compute, thermodynamic correlation functions are much more 
difficult to obtain than the PDOT except in the infinitetemperature l i t  [25-28]. 

On the other hand, it seems to us that the PDOT has a wider physical significance than just 
describing dynamics of infinite-temperature systems. The PDOT contains a weighted sum of 
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all the possible transitions in the many-body system, and therefore it contains information 
about all of the eigenstates and energy differences of the Hamiltonian. The difficulty is 
in extracting this information from the PDOT, since the eigenvalues and eigenstates of the 
Hamiltonian are macroscopic quantities, which cannot easily be determined from purely 
local microscopic information such as the PDOT. However, in principle the Liouvillian 
recursion we have carried out does indeed contain a great deal of physical information about 
the system, since it contains a complete solution of Heisenberg's equation of motion for 
any given local starting operator. Furthermore, this solution did not assume any particular 
temperature, or even a thermodynamic ensemble of any kind. The choice of inner product 
was merely a mathematical convenience and did not imply any physical choices about 
thermodynamics. Using the trace norm inner product we achieve a representation of the 
time evolution of the starting operator 

Q(t) = (60) 

in terms of J, the tridiagonal matrix representation for L. Furthermore, although the specific 
basis of operators U, which tridiagonalize L and the continued fraction parameters [an, bJ 
depend on the choice of inner product, the time-dependent operator Q(t)  is independent 
of the basis operators and matrix representation of L. Different choices of inner product 
amount to linear transformations among the orthonormal basis operators which must leave 
@(I) invariant. The choice of inner product therefore has no direct physical significance. 
The physics enters in evaluating expectation values of the time-dependent operator Q(t), 
which can be obtained in any quantum state or set of quantum states desired, whether zero 
temperature, finite temperature, infinite temperature or with any arbitrary non-equilibrium 
density matzix. 

Given that the choice of inner product has no physical significance the question arises 
as to whether the PDOT itself has any physical significance. We believe that the PDOT does 
indeed contain important physical information about the system, and is therefore a useful 
quantity to compute. We have three arguments for the direct physical significance of the 

The first argument that the projected density of transitions contains physical information 
independent of the thermodynamic ensemble or temperature comes from the results for non- 
interacting systems. As we showed above, for non-interacting electron systems the PDOT for 
a single-particle creation operator becomes precisely the projected density of states (PDos) 
for the corresponding local orbital. The PDOS is purely a properly of the Hamiltonian, and 
independent of the temperature of the system. If instead of the trace norm we bad used 
the Kubo inner product at temperature T, we would have obtained not the PDOS but the 
time-dependent thermodynamic Green function for the electrons, which is a function of both 
temperature and chemical potential. The PDOT computed with the trace norm can therefore 
have a quite different physical meaning from the quantities computed in the Mori formalism. 

The second argument that physical information can be directly extracted from the PDOT 
comes from considering finitesize systems. We have already shown that for these systems 
the PDOT converges to a weighted set of delta functions, at each eigenvalue difference of 
the system: o, = E, - Ej .  We can also evaluate the eigenoperator of the Liouvillian, 
LY, = way,, for this frequency, since it is just given in terms of the tridiagonalization: 

ya = p"(..)U.. (61) 

Here P,(o) are the orthogonal polynomials Corresponding to the continued fraction 
[a-, bJ [lo]. But, as mentioned in the introduction, the eigenoperators of the Liouvillian 
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2xi bo s 1 / l/(o - L)Q(O)exp(iot)do = - [(o - J)-']o.U,exp(iot)dw 

PDOT. 

n 
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correspond to direct transitions between eigenstates: 

Ya = li)(il (62) 

provided that the Liouvillian spectrum has no degeneracies. Thus, by tridiagonalizing 
the Liouvillian in a finite system, one can in principle directly construct the eigenvalues 
and operators which project onto specific eigenstates of the Hamiltonian. Clearly, the 
full spectrum of the Hamiltonian is thus determined from the Liouvillian recursion. Notice, 
again, that these statements are completely independent of the temperature of the system; we 
have constructed the full spectrum independent of any choice of thermodynamic ensemble. 

The third, and most subtle, argument for direct physical significance is that in the 
macroscopic limit the positions and natures of singularities in the PWT are independent of 
the choice of inner product and of the local operator which initiates the recursion. Consider 
first what happens to the PDOT as the system size increases toward the macroscopic limit. At 
any finite size the PDOT consists of isolated delta functions at discrete transition frequencies. 
As the system size increases the number of transitions grows exponentially, and their spacing 
decreases exponentially. In the macroscopic limit the continued fraction representation of 
the PDOT allows several distinct possibilities for the spectrum ~ Q ( u ) :  it may still contain 
isolated delta functions; it may contain dense sets of delta functions (discrete pointwise 
spectrum); it may contain a singular continuous spectrum where the FDOT is infinite but the 
infinities contain no weight and it may contain absolute continua where ~ Q ( o )  is continuous 
and finite. In general there will also be band edges separating the absolute continua from 
other spectral regions or gaps with pa(@) = 0. Finally, the absolute continua can contain 
frequencies where the PDOT or one of its derivatives is discontinuous (called van Hove 
singularities in band theory). The positions and natures of the singularities in the spectrum 
are determined exactly by the asymptotic behaviour of the continued fraction coefficients 
{an, bn] [32], just as they are determined by the macroscopic limit of finite systems. Since 
for finite systems the choice of inner product and starting operator only affects the weights 
of the delta functions, and provided the inner product is not singular itself, then it follows 
that the positions and natures of the singularities are not affected by either the inner product 
or the starting operator. Band edges in the PDOT correspond physically to thresholds for 
excitation which, by the preceding argument, are independent of the inner product or starting 
operator. 

Singularities in the PDOT spectrum are important physically since they correspond to 
the longest-lived contributions to C&). This follows simply from (31), which shows that 
CQ(l )  is the Fourier transform of the PDOT. In most cases excitations Q(0) created at time 
t = 0 s w n  run away to infinity and so C&) = (Q(0). Q(t ) )  falls rapidly to zero as 
t increases. Discrete delta functions in the spectrum correspond to infinitely long-lived 
contributions, however, and hence to excitations Q(t) that remain in the region of the solid 
where they were created. Band edges correspond to contributions with power law time 
decay, while excitations within the absolute continua correspond to exponentially decaying 
contributions to cQ(t). 

In fact, we can go further and construct operators corresponding to the excitations at the 
frequencies where the PDOT is singular. These operators have the physical significance that 
they create long-lived slowly moving excitations, i.e. localized or band edge elementary 
excitations of the system. If o, is the singular frequency, then the corresponding excitation 
operator is 
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where again P&) are orthogonal polynomials generated by the continued fraction. If w, 
is an isolated delta function then the P,,(w,) decrease exponentially with n, and this is an 
absolutely convergent series. The operator Yc to which the series converges is necessarily 
a projection between two exact eigenstates of the many-body system: l i ) ( j l ,  provided the 
transition is non-degenerate. If the singular frequency w, is a band edge or a van Hove 
singularity inside an absolutely continuous region then the construction of the corresponding 
operator is less straightforward since the convergence is weaker. However, by truncating 
the series after n terms one obtains an approximation to the transition operator which creates 
excitations close to the singular frequency. Increasing n produces an operator that is closer 
to the true singular transition operator, but that is increasingly spread out spatially. This 
behaviour is familiar from considerations of band edge states in non-interacting electronic 
systems: since the state precisely at the band edge is extended it cannot be obtained by 
any finite sum of local states. However at any finite sum of terms one obtains a state 
that approximates the band edge state over a finite region of space and within some finite 
energy resolution of the true band edge. These considerations apply equally to interacting 
and non-interacting systems. 

These critical excitation operators also have the important property that they allow us to 
obtain convergent expressions for expectation values. In general, the Liouvillian recursion 
only contains information about energy differences and so cannot be used to construct many- 
body states of a given enexgy or to obtain many-body expectation values. The exceptions 
to this rule are frequencies when the invariant operator 

J F Annen et a1 

yc = p " t w X "  (64) 
n 

converges to a unique transition l i ) ( j [  between exact eigenstates. Then Y, is a projection 
operator onto a specific many-body eigenstate and for any operator 0 (not necessarily one 
of the recursion operators) and we obtain 

and 

Provided the series (64) converges to the unique transition then these expectation values also 
must converge. For finite systems with a non-degenerate Liouvillian these formulae must 
converge in a finite number of terms. Similarly isolated transitions in an extended system 
correspond to unique initial and final states to which the operator Y, converges exponentially. 
The expectation values of those states therefore must also converge. Similarly a band edge or 
van Hove singularity in the PDOT will also correspond to unique initial and final many-body 
states. For example, the band gap in a semiconductor corresponds to a hole quasiparticle 
in the state at the top of the valence band and an electron quasipar&icle in the state at the 
bottom of the conduction band. Similarly in spin models with a gap, such as the S = 1 
spin chain [33], there will be a threshold for transitions from the (unique) gound state to 
the first excited state. Provided that the first excited sfate is non-degenerate (or the first 
excited state of a given symmetry is) then there will be a unique threshold transition and 
we can construct the threshold operators and the initial- and final-state expectation values. 
The only caveat is that the critical transition must have a finite weight in the specmm of 
the PDOT. 
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8. Numerical and analytic applications 

We have presented the natural generalization of the recursion method of Haydock and 
co-workers to interacting systems. We have shown that the Liouville superoperator may 
be recursively transformed into a tridiagonal form on a basis of localized orthonormal 
operators. The transformation allows us to completely solve Heisenberg’s equation of 
motion for a localized operator. The Taylor series expansion of the time evolution has a 
finite radius of convergence and a well defined moment expansion exists, which corresponds 
to a convergent continued fraction. These results contrast with the time dependence of the 
many-body wavefunctions, where no well defined moment expansion exists for extended 
systems. 

We have shown that there exists an important physical quantity, ~ Q ( w ) ,  which has the 
property that it is exponentially insensitive to the distant parts of the system. In other words 
the spectrum ~ Q ( w )  obeys a generalization of the black body theorem of von h u e .  We 
call this quantity the projected density of transitions (PDOT) since it is a sum of all the 
possible transitions from initial to final many-body states weighted by their components 
on a given local operator. The physical interpretation of the PDOT is rather subtle, but for 
non-interacting systems it becomes the same as the projected density of states. In particular, 
the singularities of the spectrum of p&) correspond to the long-lived and slow-moving 
elementary excitations. 

Additionally, we have pointed out that the invariant operators of the Liouvillian can be 
expanded in products of the orthogonal polynomials for the PDOT with the operators which 
tridiagonalize the Liouvillian. For critical transitions with unique initial and final states 
these invariant operators consist of a transition operator between two stationary states of 
the system. Expectation values in the initial or final state can be obtained by taking the 
trace of the product of an observable with the invariant operator. The analogous expansion 
of invariant states in products of orthogonal polynomials for the PDOS has been used for 
non-interacting systems to obtain asymptotic properties such as localization 1301. 

Our formalism has very close similarities to the Mori formalism [ll], but has some 
crucial differences. The Mori formalism gives continued fraction representations of 
dynamical correlation functions among operators as a function of temperature, chemical 
potential and so on. In contrast, the PDOT does not correspond to any particular choice 
of temperature, or even a thermodynamic ensemble at all, but merely weights all possible 
transitions which can occur in a given quantum system. This difference is most noticeable 
in the different inner products used in the two formalisms: the Kubo inner product in the 
Mori method compared to the trace norm used here. Although the trace norm can be viewed 
as an infinite-temperature limit of the Kubo inner product, our interpretation of the PDOT 
is quite different from a thermal correlation function. In OUT interpretation the trace norm 
does not have direct physical significance, but is important mathematically in ensuring that 
the PDOT obeys the black body theorem. Another difference is the key emphasis placed on 
the locality of the operators in our method, which is not an important consideration in the 
Mori formalism. Our proofs of convergence of the continued fraction for local operators 
and the black body theorem for the PDOT are also new as far as we know. 

A great deal is already known from non-interacting models about possible behaviours 
of the continued fraction expansions and projected density of states [32]. All of these 
earlier results can be taken over without change to the interacting case, once it is clear 
that the PDOT obeys the back body theorem. Additionally, many numerical calculations 
already exist using essentially the same formalism we have presented here. These earlier 
calculations interpreted their results as corresponding to timedependent correlations in the 
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Mori formalism at infinite-temperature. In our interpretation, these previous results have 
obtained the PDOT, which is an intrinsic property of the transitions in the system and not 
specifically an infinite-temperature quantity. For example, in the one-dimensional XY 
and transverse king models the continued fraction parameters are known to all levels, 
and thus the complete PDOT is known [25,26]. In more complex systems, such as the 
one-dimensional Heisenberg model, the continued fraction parameters must be computed 
numerically. In the ID Heisenberg model 30 'infinite-temperature' moments are known, 
equivalent to a 15-level continued fraction [ZS]. Unfortunately a continued fraction of 
this length is usually insufficient to reliably identify critical frequencies unless it becomes 
clear how to extrapolate the continued fraction parameters. Also, for many of the important 
many-body Hamiltonians, such as Hubbard and Heisenberg models, it will probably only be 
possible to obtain a few continued fraction levels, since the number of operators generated 
by repeated commutation with the Hamiltonian grows exponentially fast. 

Recent developments in understanding the effects of numerical errors on the recursion 
method [23] indicate that the computational approach can be extended far beyond what has 
been done. Although the number of operators generated by the recursion can grow as fast as 
a factorial, the errors generated by neglecting small components in the tridiagonal basis for 
the Liouvillian do not accumulate. This means that, despite this rapid growth, interacting 
Liouvillians can be tridiagonalized to far greater depth than previously thought, and the 
resulting continued fractions should give a much more acCUrate.PDOT. From Paige's theorem 
for the accuracy of Lanczos eigenvectors [34] it follows that the orthogonal polynomial 
expansion for the invariant operators is also insensitive to the neglect of small components 
during the tridiagonalization. 

In general, our method lacks a direct approach for determining ground-state or 
thermodynamic information about a given system. The exception is when a trmition 
corresponds to unique initial and final states, such as in a non-degenerate finite system, or 
+s a band edge or excitation threshold in an extended system. Somehow it would appear 
that in general ground-state information should indeed be contained in this formalism, since 
we have obtained a complete solution to Heisenberg's equation of motion. One possibility 
that we have explored is to construct 'lowering' operators, which are operators that lower 
the energy of any state they act on. Presumably these operators should yield projection 
operators that can project a given trial wavefunction onto the ground state. Such a lowering 
operator is easily constructed from the orthonormal basis operators: 
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where A(@) is any arbitrary function. It is also possible to Construct perturbation theories in 
which a non-interacting model Liouvillian LO is first tridiagonalized and then the interactions 
V are introduced perturbatively. The perturbation theory for the resulting continued fraction 
is identical to the conventional recursion method perturbation theory [lo]. However, such 
topics are perhaps best left for a future paper. 
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