IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

A recursive solution of Heisenberg's equation and its interpretation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys.: Condens. Matter 6 6455
(http://iopscience.iop.org/0953-8984/6/32/008)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.147
The article was downloaded on 12/05/2010 at 19:10

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/32
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

© = 777 ). Phys.: Condens, Matter 6 (1994) 6455-6475. Printed in the UK

A recursive solution of Heisenberg’s equation and its
interpretation

James F Annett}, W Matthewy, C Foulkes} and Roger Haydock§

t Department of Physics, The Pennsylvania State University, 104 Davey, University Park,
PA 16802, USA

1 Blackett Laboratory, Imperial College, London SW7 2BZ, UK

§ Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR
97403, USA

Received 12 April 1994

Abstract. We present the generalization of the recursion method of Haydock and co-workers
{0 systems of many interacting particles. This new method has close similarities to the memory
function or Mori formalism, but with some important differences. Heisenberg’s equation for
the ime evolution of a microscopic operator is recursively transformed into a tridiagonal matrix
equation. This equation resolves the operator into compenents corresponding to transitions of
different energies. The projected spectrum of transitions has a continued fraction expansion
given by the elements of the tridiagonal matrix. We show that for an appropriate choice of
inner product this density of transitions obeys a generalization of the black body theorem of
electromagnetism, in that it is exponentially insensitive to distant paris of the system. This
implies that the projected density of transitions is computationally stable and can be calculated
even in macroscopic many-body systerns: We argue that the physical content of the density
of transitions is determined by the nature of its singular points, such as discrete transitions,
continuous spectrum, band edges and van Hove singularities.

i. Extended many-particle systems

The physical properties of macroscopic systems are often strongly influenced by the many-
particle interactions among the constituent particles. For example, the rigidity of solids,
magnetism and superconductivity are all cooperative many-particle phenomena originating
in the correlations between electrons andfor ions in solids. These phenomena are also
intrinsically macroscopic in nature, since no finite system. exhibits true rigidity, magnetism
or superconductivity at any non-zero temperature. Understanding these phenomena thus
requires calculations of properties in extended many-particle systems. Unfortunately, for
macroscopic systems a full quantum mechanical of treatment of the interactions is rarely
possible.

Perhaps the worst of the difficulties encountered in extended many-particie systems are
strong coupling and exponential growth in the density of states. The problem of exponential
growth is that the number of quantum states in the many-particle Hilbert space grows
exponentially with the system size. Not only does the total number of states increase,
but with the total density of states at any given energy also increases exponentially, as
does the density of states of any given symmetry. The problem of strong coupling is a
consequence of this exponential density of states. For any finite strength of the many-
particle interaction, there are an exponentially large number of states with energies less
than the perturbation strength. Any non-interacting unperturbed state will therefore have
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exponentially small overlap with the true interacting particle state, 2 phenomenon often
known as the orthogonality catastrophe. This implies that, in general, perturbation theories
will have zero radius of convergence, and useful results can only be obtained by selectively
sumuming infinite classes of diagrams. Many modern methods have been developed to
overcome these difficulties, including exact numerical solutions in finite systems using
quantum Monte Carlo [1,2] or exact diagonalization Lanczos [3] methods, renormalization
group methods [4, 5], and conserving approximations {6]. While much progress has been
made, each of these methods has both advantages and disadvantages, and no single method
is adequate to address all the problems of physical interest.

The purpose of this paper is to identify a physical quantity that is computable
mathematically and physically stable even in an infinite many-body system. We shall
call this quantity the projected density of transitions (or PDOT), denoted by pg(w) where
Q is a microscopic operator. For a wide class of many-body models this quantity has
the very useful property that it is exponentially insensitive to the distant parts of the
system or the boundary conditions. The proof of this property is given below, and is
essentially an extension of the von Laue black body radiation theorem [7] to the Heisenberg
equation of motion. Mathematically, the proof is based on the solution of the classical
moment problem [8], which is equivalent to the solution of 2 wave equation. The PDOT is
physically somewhat analogous to the familiar projected density of states (PDOS) of non-
interacting systems, and its computation is essentially the natural extension of the recursion
method of Haydock and co-workers [9, 101 from non-interacting to many-particle systems.
Unfortunately the physical interpretation of the PDOT is less straightforward than for the
poOSs. We argue below that the singularities in the spectrum of the PDOT correspond to the
thresholds for creating long-lived elementary excitations of the many-body system, and are
thus physically meaningful quantities.

The method that we present in this paper has close similarities to the well known
Mori formalism, or memory function method, developed in [11-14]. In this method the
Liouville superoperator, L = [H, ], is used to provide a compact representation of the time
evolution of operators under Heisenberg’s equation of motion. The Heisenberg equation of
motion is transformed into a tridiagonal form, from which a continued fraction expansion is
constructed. In cur method we also tridiagonalize the Liouville superoperator and construct
a continued fraction representation of the spectrum. The principal differences between our
method and the Mori approach are in the choice of an inner product for the Hilbert space of
operators, and in the physical interpretation of the spectrum. Another important difference
is that our main resuits apply only to the dynamical evolution of local or microscopic
operators, which we show can be evaluated even in extended or macroscopic systems. The
black body theorem, which is the central result of this paper, applies only to local operators
with our choice of inner product and is not true in the more usual Mori formalism.

The paper is organized into seven further sections. The first of these sets the scene by
describing the aspects of the Heisenberg picture that are relevant to what follows, introducing
Heisenberg’s equation and presenting its formal solution. The next section describes the
black body theorem. In section 4 there is a discussion of the representation of operators
and the choice of inner product for operators. Section 5 contains our key results, giving a
detailed description of the recursive solution of Heisenberg’s equation. In section 6 there
is a discussion of some simple illustrative examples. Finally, in section 7 we discuss the
interpretation of the projected density of transitions for a general interacting system, and
section 8 presents some conclusions.
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2. The Heisenberg picture

The two conceptual ingredients of quantum mechanics are the states, or wavefunctions, and
the observables, or operators, such as velocities and positions. In describing the evolution
of a system, the time dependence of physical guantities, which are the expectation values
of the cbservables with respect to the states, can be distributed between the states and
the observables in any way. The first important point we make is that for numerical
computations in extended many-body systems the Heisenberg picture is considerably more
convenient than the Schriddinger picture.

In the Schridinger picture the time-dependent Schrodinger equation has the familiar
formal solution:

¥ () = exp(—1H DY (0) (D

(in units in which % = 1). The difficulty with this equation in extended many-body systems
is that the Hamiltonian H is proportional to the system size, and therefore the dominant
frequencies contained in a general wavefunction are also proportional to the system size.
For example, we can define a formal density of states projected on any state ¥r(0):

1 1
Py (E) = ;3(‘/’(0) m’&@)) 2

(where € is a positive infinitesimal) but this 1s not a useful quantity. The reason is that
successive moments of this projected density of states grow as powers of the system size,
and therefore the projected density of states possesses no well defined moment or continued
fraction expansion, in contrast to the single-particle density of states. This is another
example of the orthogonality catastrophe, since no finite-energy eigenvector of H, such as
the ground state, has any finite overlap with any given trial state ¥(0). The non-existence
of the moment expansion for the density of states projected on ¥ (0) is also equivalent to
the statement that the Taylor series for the time dependence of ¥ (#) has zero radius of
convergence, since in -

Y () = [1—iH: + (—iH)? 24 .. ]9(0) 3

successive terms grow with powers of the system {which might be infinite), and hence the
solution in (I} is purely formal in infinite systems. These problems make it necessary to
carry out computations only in finite-size systems and then take the thermodynamic limit
by finite-size scaling at the end of the calculation.

Now let us contrast this behaviour with the Heisenberg picture. In the Heisenberg
picture the time dependence is transferred from the wavefunctions to the operators with the
usual time dependence:

_ 40w
dr

Since the above commutation of H with Q(z) is a linear transformation of the operator
Q(1), it may be written in terms of a superoperator, L, called the Liouvillian [15]

=[H, (1] @

LX =[H, X] N &)

for any operator X. The Liouvillian is a superoperator since it is a linear transformation
acting on the space of observables or operators rather than on the space of wavefunctions.
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If the Hamiltonian is tire independent, then the Liouvillian is also time independent and
Heisenberg’s equation of motion has the formal solution

Q1) = exp(L) 2(0). (6)

Since Heisenberg’s equation is first order its formal selution contains one constant operator,
namely Q(0).

This formal solution of Heisenberg’s equation shows that the frequencies present in
Q(t) are just the eigenvalues or, more precisely, the invariant values of the Liouvillian
for the various components of @(0). The magnitudes of these frequencies can be simply
estimated by the growth of @(0) as it is multiplied by successive powers of the Liouvillian.
A little experimentation with different Hamiltonians shows that when @ is a single-particle
position, momentum or other variable, these frequencies are characteristic of the binding
energies of that particle. When @ involves several particles, its frequency is characteristic
of the energy of the several particles. Therefore the characteristic frequencies in (6) are
independent of the size of the system, and hence microscopic. This is quite different from
the Schrddinger picture, where the characteristic frequencies are proportional to the size of
the systemn and hence macroscopic. We shall prove below that the characteristic frequencies
in the Heisenberg picture remain microscopic for a wide range of interesting many-body
Hamiltonians, and that this implies that the time evolution of operators possesses a number
of useful convergence properties.

3. The black body theorem

Wave equations have the property that the density of modes at one position is exponentially
insensitive to distant disturbances. This is called the black body theorem because it explains
why black bodies emit a spectrum of electromagnetic radiation that is independent of the
black body’s shape or material. Even in electromagnetism, this theorem is surprising
because, while it is plausible that the spectrum should be insensitive at wavelengths much
shorter than the scale of any feature of the black body, different materials do have different
optical properties and yet the spectrum is insensitive to this as well. The qualitative
explanation is that in thermal equilibrium the spectrum is determined by the normal modes
of the cavity, rather than by the nature of the walls. Weyl [16] showed that the total density
of modes is independent of the shape of the cavity, provided its dimensions are all much
greater than the wavelengths under consideration. Von Laue [7] went on to show that at
any point inside the cavity the density of normal modes at a particular frequency depends
on the walls to a degres that decreases exponentially with the namber of wavelengths (at
that frequency} to the nearest wall.

Friedel [17] later argued that the black body theorem also applies to the local density of
states of the one-electron Schrodinger equation (see Heine [18] for a commentary on this). In
one-electron quantum mechanics, the electronic wavefunctions replace the electromagnetic
modes, and the probability density for finding an electron at a given point with a given
energy replaces the local density of normal modes. The uaderlying principle is the same,
namely that a change in the material at a distance of several wavelengths affects only the
phase, and not the amplitude of the wavefunctions averaged over a small range of energy.

The general form of the black body theorem establishes the local demsity of modes as
a stable physical quantity in systems described by wave equations. The local density of
modes at  is given by

plr, @) = Zlmwizacw - ) 7
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where ¥r; is the eigenfunction {whether electromagnetic or Schrédinger) with frequency w;.
It follows from the properties of the wave equation that the local density of modes averaged
over a small range of frequency changes by an amount that decreases exponentially with the
distance measured in wavelengths from some disturbance. In contrast, the normal modes
themselves are known to be highly sensitive to distant disturbances in the system.

Like Maxwell’s and Schrédinger’s equations, Heisenberg’s equation is an example of
a linear wave equation. However, in this case the waves are operators. The normal modes
of the Heisenberg equation are the operators with harmonic time dependence

Yo (t) = ¥a expliwst) ®
where Y, is an invariant or eigenoperator of the Liouvillian satisfying
LY, = w,¥,. : E);

From the definition of the Liouvillian it is easy to see that its invariant operators, ¥,, have
the form of transitions among the different eigenstates of the Hamiltonian:

Yo = |91} (¢l (10
with

00 = E; — E an
where

H |y} = Eiltfn)} (12)

and the [y} are the many-body eigenstates of the system with energies E;.

In order to extend the black body theorem to Heisenberg’s equation, the idea of the
local density of modes must be generalized to something that describes a local property
of the invariant operators in the above equation. To do this we must instead introduce
some notion of locality for an operator. We shall call an operator local if it only acts on
or changes occupation numbers in a finite region of space. For example, the real-space
electron creation and amnihilation operators, ‘density operators and so on are familiar local
operators. The importance of local operators has also been emphasized by Fulde [19] in a
slightly different context.

Secondly, we must resolve a local operator into components at different frequencies.
Operators combine linearly, just as waves do, so a component of an operator is a projection
of one operator on another. To establish projection among operators we must introduce an
inner product, (X, ¥), on the space of operators (not to be confused with the inner product
of states {1r|¢}). Specific choices of inner products are discussed below in section 4. Given
a local operator, say O, and an inner product ( ,) it is natural to define the following
projected density of modes:

pol@) =Y _ [(Q, Ya)28(w — w,). (13)

Since the eigenoperator ¥, is a solution to the wave equation, this projected density of
modes is nothing more than the local intensity of each mode. This idea of a projected
density of modes is the natural extension of the familiar local density of states of (7). Since
the eigenoperators ¥, correspond to transitions among eigenstates, we shall refer to pg(w)
as the projected density of transitions (PDOT). It is the central quantity in all the main results
of this paper.
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The general form of the black body theorem is that the average of the local density of
modes over a localized test function is exponentially insensitive to distant disturbances in
the system. We shall prove below that the PDOT for Heisenberg’s equation obeys the black
body theorem, provided that the operator or test function in the projection is localized.
The biack body theorem then says that any frequency average of the magnitude of the
component of the localized operator in each mode is exponentially insensitive to changes in
the Liouvillian that are many wavelengths distant. The proof of the black body theorem for
Heisenberg’s equation follows from the convergence of the continued fraction expansion of
the projected density of transitions. The development of this main result is the subject of
the next two sections. '

4. Inner products and representation of operators

For Heisenberg's equation the black body theorem applies to the projected density of normal
modes which requires the definition of an inner product between some localized operator
and the normal modes. In other words, we need to define an inner product on the space
of operators, (X, ¥). This product should obey the usual rules for inner products, such as
(X, ¥) = (¥, X)*. The most important requirement that the inner product must satisfy is
that the Liouvillian superoperator should be Hermitian:

(X,LY)=(LX,Y). (i4)

To see why this is necessary let Q(0) be some localized operator that evolves into Q1)
according to the exponential of the Liouvillian L. The projection of Q{r) onto Q{0)
is the inner product Co () = (Q2(0), () = (Q(0), 4 Q(0)). If the physical system
described by this Liouvillian is invariant under time translations, then the correlation
between @ at two different times must also be invariant under time translations, or
(R0, Q@) = (L Q(0), ¥ Q(0)) = Cp(t — ), which is clearly satisfied if L is
Hermitian. At least L must be Hermitian in the subspace of operators spanned by Q(#).

The most general inner product for which the Liouvillian is Hermitian is a weighted
trace of X' and ¥ over eigenstates of the Hamiltonian, i.e.

(X, ¥) =D wi (| X0 (91 Y ) (15)

where the weights w;; must all be real to fulfill the conjugation condition, (X, ¥) = (¥, X)*,
but are otherwise arbitrary. This class of inner product leads to a Hermitian Liouvillian,
since

ALX, 1) =Y wiy (sl (HX — XEY 1Ny 1) (16)

= > wy (W X ) (0 | (HY — YHD ) an
= (X,LY). (18)

Within this general form for the inner product there are a variety of possible choices.
For example, the Kubo inner product is esually used in the Mori formalism [11, 20]:

B
X, P = ~ f (X (MY O (19
8l

where X (—iA) is the time-dependent operator analytically continued to the imaginary time
axis and {{ }) denotes a thermal expectation value at temperature T = 1/kg 8 in the cancnical
ensemble. The Kubo inner product has the physical interpretation that it yields the static
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change in {{X}} when the Hamiltonian is perturbed infinitesimally by ¥ at temperature
T [21]. It corresponds to the weight function

e, = SEPCBED) — exp(-BE))
e B(E; — Ej) :

Although the Kubo form of the inner product has a number of useful features, it does not
allow us to prove the results we are secking. In particular, there is no black body theorem
for the PDOT when the Kubo form is used. The problem is that the thermal expectation
values in (19) do depend on distant parts of the system. For example, if the system passes
through a second-order phase transition the system becomes correlated over arbitrarily long
length scales, and thermal expectation values of operators are sensitive to arbitrarily distant
perturbations.

Another possible choice of inner product comesponds to the case in which all the states
are weighted equally [15,22). This inner product could be called the infinite-temperature
inner product, since it corresponds to 8 — 0 or constant w;;. This inner product is aiso
konown as the trace product, or trace norm, since it becomes simply

(20)

(X, ¥) = Te(X'¥)/Te(D) (21)

where Tr denotes the trace of a matrix or operator, and [ is the identity operator. The
normalization factor 1/Tr(f) is not necessary, but is convenient for actual calculations since
it ensures (I, I = 1. The trace norm has the important property that if X and ¥ are local
operators only acting in some limited region of space, then the trace norm can be easily
computed solely within that region. The trace norm of two local operators is therefore
completely insensitive to distant parts of the system, unlike the Kubo inner product.

To give a concrete example, suppose that our system has a basis of localized single-
electron Wannijer orbitals, atomic spin-orbitals on the sites of a crystal lattice, for example.
Let cI, c;ﬂ, ... be electron creation operators that add particles to orbitals 1, 2,... etc, and
which have the usual anticommutation rules:

[Cla Cmls =nm. (22)

Assuming that the Wannier orbitals are orthonormal, it is simple to show that the trace norm
inner products of the creation and annihilation operators are

(Cns €m) = (C}, 1) = 8p /2 : (23)

(¢}, em) =(ea,cl) = 0. (24)

The operators at site n are orthogonal to the operators at all other sites, and hence the trace
norm can be evaluated solely in the region of space containing site n.

The full trace norm is not the only inner product that can be used here. For example, if
the trace is restricted to a subspace of the Hamiltonian corresponding to a given symmetry
sector, then again 2 Hermitian Licvvillian is obtained. Trace products with a given particle
number or total z-axis spin are also simple to implement. The only absolute requirements
we need below are Hermiticity of the Liouvillian and the locality of the inner product of
two local operators, and any inner product that satisfies those conditions can be used.
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5. Recursive solution of Heisenberg’s equation

We are now in a position to derive the central result of this paper, namely the black body
theorem for the projected density of transitions. The proof is developed in two stages: first,
we show that Heisenberg’s equation of motion for a local operator has a Taylor series with
a finite radius of convergence; second, we argue that the moment expansion of the PDOT
can therefore be represented by a continued fraction expansion. The continued fraction is
generated by a straightforward recursion, which is used to prove the black body theorem.

The formal solution of Heisenberg’s equation in terms of an exponential of the
Liouvillian (6) suggests a power series in time, which may or may not have a finite radius of
convergence. For a localized operator Q(0) consider a single component of Q(#), namely
its projection back onto @(0): (Q(0), O(£)). By expanding the exponential of L in a power
series, this component can be written as

Cot) = (Q(0), O1)) = go + iqnt — Laat® + ;—:q3t3 ot %q,,t" +.. (25)
where the coefficients are the moments of L on Q(0):
g = (Q(0), L"Q(O)). (26)

For Heisenberg’s equation to make sense the above power series must converge, at least for
some finite interval of time, however small. From the usual criteria for convergence of a
power series, the above expansion for Co(#) converges absolutely from time zero to some
positive time t, provided that the moments grow no faster than n!/z". Of course, this does
not imply that the time evolution of (¢} becomes singular at time =, but just that there is
a singularity in the complex z-plane at a distance 7 from the origin.

The proof of convergence of the power series in time follows from power counting
the moments g,. Suppose for simplicity that we start with a single creation operator at
some lattice site for the initial operator Q(0). Suppose also that each action of L on a
creation or annihilation operator produces at most Z new terms. For example, Z will
reflect the coordination of the lattice and so on. We also assume that there are only two
particle interactions, so that Lc! can produce strings of no more than three new creation
and annihilation operators. We can then see that L Q(0) contains no more than Z terms,
each with three or fewer creation or annihilation operators. Now using the operator identity

LXY..Z)=(LX)Y..Z+X{ILY)...Z+...+XY...(LZ) 27

we can see that applying L to LQ(0) we can obtain at most 32? terms, which can
contain at most five creation or annihilation operators. Repeating this process iteratively
we can see that L” Q(0) contains at most 1.3.5.....(2n — 1)Z" terms containing up to
1.3.5.....(2r+1) creation and annihilation operators. If M is the maximum matrix element
for L acting on any single creation or annihilation operator, then the moment g, cannot
exceed 1.3.5.....(2n = 1)(ZM)" ~ n!(2ZM)". This bound is just sufficient to prove that
the Taylor series has a finite radius of convergence, T, since by the ratio test the series
must converge absolutely when |¢| < 1/2ZM. Note that we are not saying that the power
series certainly diverges for t > 1/2ZM, but simply that the radius of convergence is at
least 1/2ZM. The radius of convergence may be larger, or even infinite, in some special
cases. Clearly the proof can be generalized to any starting operator Q(0) that is a finite
combination of creation and annihilation operators, and hence to any localized @{0) in 2
fermionic system. For bosons, even a localized operator may contain infinitely long products
of creation and annihilation operators, and so it is necessary to make the further restriction
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that all such products must be finite. We must also assume that the Hamiltonian does not
include any singular or long-ranged potentials, so that the matrix elements remain bounded
by M. and Z is finite. This requirement is satisfied by a large number of model many-body
Hamiltonians, such as Heisenberg and Hubbard models, but does not allow for long-ranged
Coulomb interactions. Singularities in Cg(¢) may arise when Q(0) is delocalized, or when
there are singular or long-ranged potentials that give the frequency spectrum of Cg(f)
weight at high frequency. This weight at high frequency means that Cg(#) goes to zero
very rapidly, which is the same thing s saying that the excitation created by Q(0) runs
rapidly away to infinity.

The time evolution of the operator Q{t) is most conveniently represented in the
frequency domain. The Fourier transformation of Heisenberg’s equation is algebraic and its
solution is the resolvent of L applied to Q{0) [15]:

RGuw) = =100, (28)

In terms of R(w), the solution of the original equation is

: 1
o) = P f R{w) exp(iwtyde (29)

where the integral is taken around a contour in the complex w-plane that encloses the poles
of 1/(w — L). These poles must lie on the real axis since L has real eigenvalues. The
resolvent R(w) thus contains the same dynamical information about the time evolution of
the operator ((t) as the original Heisenberg equation. Inm particular, R{w) resolves the
operator Q) into its component transitions at different frequencies. '

The analytic properties of the frequency spectrum are most easily studied by examining
a single matrix element of the resolvent, the diagonal G(0) element of the resolvent:

Ro(w) = (Qm), ;}ZQ(O)) = (Q(0), R(w)). G0y

This provides a convenient representation of the time evolution of Cp(#) by the Fourier
integral

1
Co(®) = i f Ry (w) exp(iwt)dw (31)
where again the integration is over a contour that encloses, but does not intersect, the
spectrum of the poles of Rg(w) on the real axis. Comparing this representation of Cg(2)

with the Taylor series (25) we see that the moments of the Liouvillian, g,, are equal to the
frequency moments of Rg(w):

1

Introducing the projected density of transitions (PDOT), po(w), as the imaginary part of
the resolvent for frequencies infinitesimally below the real axis

po(@) = Z3Ro(w i) @33)

we see that po(w) is a real and positive function. To see that this cérresponds to the original
definition of (13) simply evaluate the resolvent (30) on the basis of the invariant operators
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of L from (9) and use the usual identity (strictly valid only within an appropriate integral):
31/(x —i€) = w8(x). Furthermore, the moments of pp(w) are also given by the g,:

Gn = f pol{w)w"dw (34)

where the integration is along the real axis. The bound that the moments grow no faster
than n!{(2ZM)" implies that the function pg(e) decays at least exponentially for large e:

po(w) = Oexp[—|ol/QZM)]) (35)

as |@| — co. For a géneral macroscopic many-body system the spectrum of transitions
will not be bounded, since there are transitions among many-body states of all macroscopic
energies; however, the exponential decay of the projected density of transitions shows
that the spectrum does not behave ‘too badly’ at infinity, provided the operator Q(Q) is
local. Using this bound on pg(w) it is clear that (31) converges for all times, £, and can
thus be viewed as the analytic continuation of the Taylor series (25) beyond its radius of
convergence.

We have now shown that the density of trangitions pg(w) projected on a local
operator is a positive real function with moments given by the moments of the Liouvillian
gn = (Q(0), L"0(0)), which can be calculated in a finite number of computational
steps. However, the representation of a function in terms of its moments is notoriously
ill conditioned. For example, a small error in a moment g, due to computer rounding error
could result in a large change in the value of pg{w) at any specific frequency w. A much
better behaved representation is provided by a continued fraction representation. First we
expand the diagonal matrix element of the resolvent:

Rowy=L1 L L o

R RIS S (36)

This is now an asymptotic expansion around infinity and seems even less convergent than
the power series in time. However, because Rg(w) has all its singularities on the real w-axis
and because they all have positive residues, which follow from conservation of probability
by the Hamiltonian, this series can be summed by a continued fraction of the Jacobi type [8].
The continued fraction converges absolutely for all @ off the real axis:

b

Ro(w) = @7

b

w—ag— 3

w— ...

w—da; —

where the parameters of the continued fraction {a,, b,} are all real, and may be related to
the moments by expanding the continued fraction as a power series in 1/w. The continued
fraction expansion has the strongest convergence properties of all the series discussed here.
In particular, outside its spectrum the continued fraction converges exponentially.

The parameters in the continued fraction expansion {a,, b,} can calculated from the
moments {which is ill conditioned) or by a direct extension of the recursion methaod [9, 10]
to Heisenberg’s equation of motion. The original Schridinger equation recursion method
constructs an orthonormal sequence of states {u, 11, ..., 4, - - .} such that the Hamiltonian
is successively transformed into a tridiagonal form under the recursion:

Hup = aytty + bpyrtiny) + bpup_y. (38)
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The application of the recursion method to Heisenberg’s equation constructs a basis of
orthonormal operators {Uy, Uh, ..., U,, ...} in which the Liouvillian superoperator is a
tridiagonal matrix. In other words, the recursion expresses the Liouvillian as a three-term
recurtence:

LU, = a Uy + bp a1 Upgy + 5, Uy nz0. (39)

This recurrence generates a sequence of operators {{/,} which are orthonormal with respect
to the inner product:

(Um Um) = an.m- (40)

The operators U, are generated by iterating the algorithm

ap = Uy, LUy) (41)
Vot = LUy — a,Uy — by Uy (42)
b,i;.l = (Vas1s Vag1) (43)
Unil = Vg1 /Bnss (44)

starting the recurrence with U_; = 0 and Uy = Q(0)/b;, the normalized local operator
G(0) with b% = (@(0), @(0)). By construction this recurrence ensures that (I, Upy1) = 0
and using the fact that L is Hermitian one can prove by induction all the operators {U/,} are
orthonormal. In the basis of the operators {I7,} the Liouvillian superoperator is represented
by a symmetric tridiagonal matrix. The matix J,, = (U,, LU,) has the {a,} along the
main diagonal and the {b,} along the first upper and lower subdiagonals with the rest of the
matrix elements zero. Finally, the resolvent element (Up, 1/(w — L)Up) can be expressed
in the orthonormal basis of the {{/,} and corresponds to the leading diagonal element of the
inverse of the tridiagonal matrix wf — J:

Vo, 1/ (@ ~ L)Up) = [(@I — 1) 0. 45)

This tridiagonal matrix inverse can be computed easily, and corresponds to the continued
fraction (37) apart from the trivial normalization constant b3. The coefficients {a,, #,}
generated by the recursion are therefore exactly the same parameters that appear in the
continued fraction representation of the resolvent element Rg(w). The resolvent and PDOT
can therefore be computed directly by the recursion (44). All of these results are simply
equivalent to the usual recursion method results [10], except that the orthonormal states u,
are replaced by the orthonormal operators U, and the Hamiltonian operator is replaced by
the Liouvillian superoperator.

The above paragraphs complete the derivation of the main results of this paper, so
let us now summarize and discuss the implications of these results. The result has been
to show that, starting from a local operator Q(0), it is possible to tridiagonalize the
Liouvillian superoperator. The tridiagonalization gives the coefficients in the continued
fraction expansion of the projected resolvent Rp(w). The continued fraction converges
absolutely and exponentially for all @ off the real axis, because it corresponds to a well
defined moment expansion. The bounds on the moments ensures that the PDOT po(w)
has at least an exponentially decaying spectrum at large frequencies. The existence of the
Liouvillian tridiagonalization has been known since the work of Mori [111; however, the
proof of its convergence relies explicitly on the locality of the operators and inner product
and has not been given before to our knowledge.
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We are now, finally, in a position to demonstrate the important physical result that the
PDOT pg(w) is exponentially insensitive to distant parts of the system, ie. that it obeys
the black body theorem. The proof is very straightforward using the machinery we have
assembled above. We have already said that at any @ off the real axis the continued
fraction expansion of Rg(w) converges exponentially. This means that the changes in
Rp(®) induced by perturbing or truncating the continued fraction at the nth level decrease
exponentially as n increases. Now, the coefficients of the nth level of the continued fraction
are obtained from the operators I, and U7,_y, which are in turn linear combinations of Q(0),
Lo, ..., L"Q(0). But if there are no long-ranged interactions ox hopping terms in the
Hamiltonian, then these operators are local and will only act within a finite radius {of order
n) of the region where the initial local operator Q(0) acts. The continued fraction up to
order n is thus completely insensitive to the system beyond this radius. Therefore Ro(w)
slightly off the real axis is exponentially insensitive to distant parts of the system. Finally,
since the PPOT pg{w) is simply the imaginary part of Rg{w) evaluated slightly off the real
axis it too is completely insensitive to distant parts of the system. Alternatively, by a Hilbert
transform

—_ l ' Po (CD)
Ro(w) = - fdco o (46)
integrating along the real axis, Rg(w) slightly off the real axis, say with imaginary part
€, depends on a Lorentzian weighted integral of pg{w) over a range of frequencies of
width €. Therefore, if Rg{w) is exponentially insensitive to the distant parts of the system,
then integrals of pp(w) over small regions must also converge. This completes the proof
of the black body theorem for the Heisenberg equation. Notice that pp(w) converges in
quadrature, but not necessarily point by point on the frequency axis; this is exactly the same
as the black body convergence for electromagnetic or Schrodinger wave equations [23].

6. Examples

6.1. Non-interacting electrons

As a first simple example of the Liouvillian recursion method we shall show that for
non-interacting electron systems the method becomes identical to the ordinary recursion
method [9, 10). Consider the electronic Hamiltonian

H=Y Hyclcq, @7

where c and ¢;,, create and annihilate spin-o electrons in local orbitals [ and j respectively.
Hjisa smgle-part]cle Hamiltonian, which contains diagonal site energies and off-diagonal
hopping terms.

We choose a starting operator for the recursion that adds a particle at some site, say
0 U= \/fcgn. The factor of +/2 is chosen to ensure the normalization (U, Up) = 1
using the fermion operator inner products given above in (24). It is simple to see from the
fermion commutation rules that

Lc:g,r = Z H,-oc;rT (4%)

and therefore the action of the Liouvillian is to move the electron to neighbouring sites.
Similarly, after n» actions of the Liouvillian:

Lcly =3 HijHje... Huocl,. (49)
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Using the trace norm inner product defined above we find the moments:

(Uo, L"Uo) = Y HojHix ... Huo = [H" 0 (50)
identical to the Hamiltonian moments. It is clear from this example that the Liouvillian
continued fraction coefficients {g,, b,} are identical to the ordinary recursion method
continned fraction coefficients that would have been obtained by recursion with the
Hamiltonian matrix acting on a normalized state, g at site 0.

This result implies that for non-interacting systems the Liouvillian recursion starting with
a single creation operator becomes identical to the conventional Hamiltonian recursion. The
PDOT therefore becomes identical to the ordinary single-particle density of states projected
onto orbital 0 and spin up. This provides a simple example, which will aid in interpreting
the physical meaning of the PDOT. The PDOT is a weighted density of transitions among
many-body eigenstates. In the case when Up is a single-particle creation operator these
are transitions between the spaces of many-body states of N and N + 1 particles. The
PDOT picks out the density of these transitions at each frequency, which for non-interacting
systems is just the single-particle projected density of states.

A related example, which shows how the Liouville recursion method goes beyond
the wsual Hamiltonian formulation, is the Bogolibov—de Gennes Hamiltonian of a
superconductor:

H= Z H;Jffcwc.i'ﬂ' + AU iF j—-d’ + A:JCJ“U'CW (51)
The many-body eigenstates of this Hamiltonian are subtle since they do not have a definite
particle number because of the non-zero gap function A;;. However, the Hamiltonian can be
diagonalized straightforwardly by Bogolibov twansformation. Using the Liouville recursion
exactly as outlined above, and a starting operator such as Uy = a\/fc(‘;T, one immediately
computes the spectrum of the Bogolibov quasiparticles [24]. Since these quasiparticies are
non-interacting the PDOT is again equivalent to the projected density of states. However, in
this case the transitions that diagonalize the Liouvillian are linear combinations of ¢! and
¢ operators. Hence they are not transitions between many-body states of definite particle
numbers, but are transitions that create or destroy Bogolibov quasiparticles.

6.2. Finite systems

Ancther simple but instructive exampie is provided by systems for which the many-body
Hilbert space has finite dimensior. For example, the finite-size clusters of Hubbard or
Heisenberg model many-body systems that are studied with exact diagonalization techniques
fall into this category [3]. For a system with a finite-dimensiona! Hilbert space we can
simply enumerate the set of basis states, say |y;), for { = 1, N. The Hamiltonian and
other operators are just finite N x N matrices. With any normalized starting matrix Up we
may use the Liouvillian recursion to generate a sequence of orthonormal matrices, Uy, Us,
etc. Since there are at most N2 possible orthonormal matrices the recursion must terminate
(b, = 0) after a finite number of steps (ignoring numerical rounding errors). The continued
fraction for this system is thus finite, corresponding to a PDOT pp{w) given by a set of up
to N? delta functions:

pow) = me:w (52)

Again the mterpretatmn of this result is clear. For a ﬁmte system there are N many-
particle eigenstates with energies E;, and thus a total of N2 possible transitions with
frequencies w, = E; — E;. Whatever starting operator, Up, or inner product (,) are
chosen the PDOT will correspond to a weighted sum of these different transition frequencies.
Different starting operators or inner products can merely change the weights of the various

transitions, w,.
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6.3. Heisenberg and Hubbard models

Since it is explicitly local the Liouvillian recursion can be easily carried out in lattice
models, such as the quantom Heisenberg or Hubbard models. These models are especially
important cases since conventional methods, such as many-body perturbation theory, are
generally not useful because of strong coupling.

For example, in the Heisenberg model

H=1Y 8 -5 (53)
)

there are (25 - 1)? possible operators for each lattice site. For the case of spin % there are
four, conveniently chosen as the identity, I, and the Pauli matrices o;. It is readily verified
that these are an orthonormal set under the trace norm [22]. A general operator is a linear
combination of products of these four basis operators. By definition a local operator is one
that differs from the identity only within a finite region of space. Equivalently, it is one
that is a non-identity at only a finite number of sites. Clearly, if Q is a local operator, the
L@ is also local since the Hamiltonian only connects neighbouring sites.

For a specific example, consider taking a normalized starting operator at the origin,
Up = oy,, we obtain:

J . ,
[H, 0] = 5 > " (—2ioy;00y + 2io1y00x) (54)
{0}

and hence g1 =0, by = J/Z/2 and

1
Uy =——= Y (—ioix00; + io1,00:) (55)
1 m% xY 0y 1y 0x

where Z is the Jattice coordination number. Notice that ¢; and b; are completely insensitive
to the dimensionality of space or other details of the lattice topology except its coordination
number, an example of the extreme locality of the Liouvillian recursion. The iteration is
readily repeated by hand for a few terms, or on a computer for several more continued
fraction levels. For example, analytic solutions t0 some related spin models have been
derived by Florencio and co-workers [25, 26], while high-order moments have been derived
numerically for the one-dimensional Heisenberg model [27, 28].
Similarly for the Hubbard model

H=—t cleu+U nmymy (56)
) i

there are sixteen basis operators per site composed of products of ~/2¢ci, +/2¢,, I and
(I — 2r;) for cach spin. Again these are orthonormal under the trace norm. Starting with
a single creation operator at the origin, Up = \/’:’cg]\, we obtain

[H, Us) = —v2t ) cl, + v2Uclimo, (57)
{03}
and g = U/2
By =—2t Y cl + 20U 2}, (2n0, — 1) (58)

{0z}

and b} = Z2 + U?/4.
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For both Heisenberg and Hubbard models the recursion can be carried out numerically
until the number of operators in a given U, fill the available computer storage. For example,
on a computer the basis operators for the Heisenberg model can be represented as integers
in base 4, where the ith digit represents the four possible operators at site /. The Heisenberg
model commutators act to simply flip bits in these integers. As successive commutators are
computed the number of operators that must be retained grows exponentially. The number
of terms that can be obtained exactly depends on the Hamiltonian and lattice coordination.
Making use of efficient storage schemes the typical limit is about 107 terms on modern
computers. For the one-dimensional Heisenberg Hamiltonians this limit is reached at the
15th recursicn level (or 30th moment) {27].

Beyond this computational limit there are a munber of possible courses of action. (i) Itis
often possible extrapolate the recursion coefficients {a,, b,} by estimating their asymptotic
behaviour, or making use of exact asymptotic properties where they are known. This
amounts to choosing an appropriate terminating function for the continued fraction [29].
(ii) It may be possible to solve a related model, Hy, analytically (for example the x—y spin

“model [25] or 7 = 0 Hubbard model are analytic) and then use recursion perturbation theory
to extract the recursion coefficients of Hy 4+ AV in powers of A [10]. This method proved
very powerful in the recursion theory of Anderson localization [30]. (iii) It is possible to
numerically truncate the number of terms that are retained during each iteration, which is
called dynamic recursion. Because of the exponential insensitivity of the PDOT to distant
perturbations such truncation errors are relatively unimportant for practical purposes, just
as numerical rounding error does not degrade the projected density of states in the ordinary
recursion method [31].

7. Interpretation of the projected density of transitions

The above discussion shows that the projected density of transitions (PDOT) is stable with
respect to changes in distant parts of the system and that it can be calculated recursively
by tridiagonalizing the Liouvillian in a basis of orthonormal operators. It remains to show
how the physical properties of the system may be extracted from this calculation.

One simple interpretation of the PDOT is that it corresponds to a thermodynamic
dynamical correlation function, evaluated in an infinite-temperature ensemble. It has been
known since the work of Mori [11] that time-dependent correlation functions have continued
fraction representations that can be generated recursively. The inner product that must
be used is the Kubo inner product at temperature T discussed above. However, the
Kubo norm becomes identical to the trace norm as the temperature becomes infinite, and
thus the PDOT can be interpreted as a time-dependent correlation function in an infinite-
temperature canonical ensemble. This correspondence of the PDOT with infinite-temperature
dynamics can be seen clearly by representing the PROT explicitly in terms of the many-body
eigenstates:

pol@) = ) W1 QI 28w — E; + Ej). (59)
i

A finite-temperature correlation function would require additional Boltzmann factors of
e~#% in the sum, as occur when the Kubo inner product is used. Since finite-temperature
Kubo products are difficult to compute, thermodynamic correlation functions are much more
difficult to obtain than the PDOT except in the infinite-temperature limit [25-28].

On the other hand, it seems to us that the PDOT has a wider physical significance than just
describing dyramics of infinite-temperature systems. The PDOT contains a weighted sum of
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all the possible transitions in the many-body system, and therefore it contains information
about all of the eigenstates and energy differences of the Hamiltonian. The difficulty is
in extracting this information from the PDOT, since the eigenvalues and eigenstates of the
Hamiltonian are macroscopic quantities, which cannot easily be determined from purely
local microscopic information such as the FDOT. However, in principle the Liouvillian
recursion we have carried out does indeed contain a great deal of physical information about
the system, since it contains a complete solution of Heisenberg’s equation of motion for
any piven local starting operator. Furthermore, this solution did not assume any particular
temperature, or even a thermodynamic ensemble of any kind. The choice of inner product
was merely a mathematical convenience and did not imply any physical choices about
thermodynamics. Using the frace norm inner product we achieve a representation of the
time evolution of the starting operator

1 ) b _ ]
o) = 5 f 1/(ew — L) Q(0) exp(iwt)dew = 2—; f @ — D" NonUn exp(iwt)dw (60)

in terms of J, the tridiagonal matrix representation for L. Furthermore, aithough the specific
basis of operators U, which tridiagonalize L and the continued fraction parameters {a,, b,}
depend on the choice of inner product, the time-dependent operator @(¢) is independent
of the basis operators and matrix representation of L. Different choices of inner product
amount to Iinear transformations among the orthonormal basis operators which must leave
(t) invariant. The choice of inner product therefore has no direct physical significance.
The physics enters in evaluating expectation values of the time-dependent operator O(2),
which can be obtained in any quantum state or set of quantum states desired, whether zero
temperatore, finite temperature, infinite temperature or with any arbitrary non-equilibrium
density matrix.

Given that the choice of inner product has no physical significance the question arises
as to whether the PDOT itself has any physical significance. We believe that the PDOT does
indeed contain important physical information about the system, and is therefore a useful
quantity to compute. We have three arguments for the direct physical significance of the
PDOT,

The first argument that the projected density of transitions contains physical information
independent of the thermodynamic ensemble or temperature comes from the results for non-
interacting systems. As we showed above, for non-interacting electron systems the PDOT for
a single-particle creation operator becomes precisely the projected density of states {PDOS)
for the corresponding local orbital. The PDOS is purely a property of the Hamiltonian, and
independent of the temperature of the system. If instead of the trace norm we had used
the Kubo inner product at temperature T, we would have obtained not the PDOS but the
time-dependent thermodynarmic Green function for the electrons, which is a function of both
temperature and chemical potential. The PBOT computed with the trace norm can therefore
have a quite different physical meaning from the quantities computed in the Mori formalism.

The second argument that physical information can be directly extracted from the PDOT
comes from considering finite-size systems. We have already shown that for these systems
the PDOT converges to a weighted set of delta functions, at each eigenvalue difference of
the system: w, = E; — E;. We can also evalvate the eigenoperator of the Liouvillian,
LY, = w,Y,, for this frequency, since it is just given in terms of the tridiagonalization;

Yo =) Paleo)Us. 61

Here P,(w) are the orthogonal polynomials corresponding to the continued fraction
{a,, b,} [10]. But, as mentioned in the introduction, the eigenoperators of the Liouvillian
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correspond to direct transitions between eigenstates:
Yo = 1] ’ ©2)

provided that the Liouvillian spectrum has no degeneracies. Thus, by tridiagonalizing
the Liouvillian in a finite system, one can in principle directly construct the eigenvalues
and operators which project onto specific eigenstates of the Hamiltonian. Clearly, the
full spectrum of the Hamiltonian is thus determined from the Liouvillian recursion. Notice,
again, that these statements are completely independent of the temperature of the system; we
have constructed the full spectrum independent of any choice of thermodynamic ensemble.

The third, and most subtle, argument for direct physical significance is that in the
macroscopic limit the positions and natures of singularities in the PDOT are independent of
the choice of inner product and of the local operator which initiates the recursion. Consider
first what happens to the PDOT as the system size increases toward the macroscopic limit. At
any finite size the PDOT consists of isolated delta functions at discrete transition frequencies.
As the system size increases the number of transitions grows exponentially, and their spacing
decreases exponentially. In the macroscopic limit the continued fraction representation of
the PDOT allows several distinct possibilities for the spectrum pgo(w): it may still contain
isolated delta functions; it may contain dense sets of delta functions {discrete pointwise
spectrum); it may contain a singular continuous spectrum where the PDOT is infinite but the
infinities contain no weight and it may contain absolute continua where pg(w) is continuous
and finite. In general there will also be band edges separating the absolute continua from
other spectral regions or gaps with pg{@w) = 0. Finally, the absolute continua can contain
frequencies where the PDOT or one of its derivatives is discontinuous (called van Hove
singularities in band theory). The positions and natures of the singularities in the spectrum
are determined exactly by the asymptotic behaviour of the continued fraction coefficients
{an, b,} [32], just as they are determined by the macroscopic limit of finite systems. Since
for finite systems the choice of inner product and starting operator only affects the weights
of the delta functions, and provided the inner product is not singular itself, then it follows
that the positions and natures of the singularities are not affected by either the inner product
or the starting operator. Band edges in the PDOT correspond physically to thresholds for
excitation which, by the preceding argument, are independent of the inner product or starting
operator.

Singularities in the PDOT spectrum are important physically since they correspond to
the longest-lived confributions to Cg(z). This follows simply from (31), which shows that
C(t) is the Fourier transform of the PDOT. In most cases excitations Q(0) created at time
t = 0 soon run away to infinity and so Co(f) = (Q(0), Q(r)) falls rapidly to zero as
t increases. Discrete delta functions in the spectrum correspond to infinitely long-lived
contributions, however, and hence to excitations Q(f) that remain in the region of the solid
where they were created. Band edges correspond to contributions with power law time
decay, while excitations within the absolute continua correspond to exponentially decaying
contributions to Cp(2).

In fact, we can go further and construct operators corresponding to the excitations at the
frequencies where the PDOT is singular, These operators have the physical significance that
they create long-lived slowly moving excitations, i.e. localized or band edge elementary
excitations of the system. If @, is the singular frequency, then the corresponding excitation
operator is

Yo=Y Pl (63)
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where again P,(w) are orthogonal polynomials generated by the continued fraction. If «,
is an isolated delta function then the P,(w.) decrease exponentially with », and this is an
absolutely convergent series. The operator ¥, to which the series converges is necessarily
a projection between two exact eigenstates of the many-body system: [i}{j[, provided the
transition is non-degenerate. If the singular frequency . is a band edge or a van Hove
singularity inside an absolutely continuous region then the construction of the corresponding
operator is less straightforward since the convergence is weaker. However, by truncating
the series after n terms one obtains an approximation to the transition operator which creates
excitations close to the singular frequency. Increasing # produces an operator that is closer
to the true singular transition operator, but that is increasingly spread out spatially. This
behaviour is familiar from considerations of band edge states in non-interacting electronic
systems: since the state precisely at the band edge is extended it cannot be obtained by
any finite sum of local states. However at any finite sum of terms one obtains a state
that approximates the band edge state over a finite region of space and within some finite-
energy resolution of the true band edge. These considerations apply equally to interacting
and non-interacting systems.

These critical excitation operators also have the important property that they allow us to
obtain convergent expressions for expectation values. In general, the Liouvillian recursion
only contains information about energy differences and so cannot be used to construct many-
body states of a given energy or to obtain many-body expectation values. The exceptions
to this rule are frequencies when the invariant operator

Y. = Zpu(wc)Un (64)

converges to a unigue transition [{}{f| between exact eigenstates. Then ¥, is a projection
operator onto a specific many-body eigenstate and for any operator O (not necessarily one
of the recursion operators) and we obtain

.. T(xioy) (Y., 0V
olis = = 65
ol Te(YJY,) (Ye, ¥o) (©5)

and

o Torh @l ovh
(j101j} = =
Tr(¥YYe) ¥z, ¥)
Provided the series (64) converges to the unique transition then these expectation values also
must converge. For finite systems with a non-degenerate Liouvillian these formulae must
converge in a finite number of terms. Similarly isolated transitions in an extended system
correspond to unique initial and final states to which the operator ¥, converges exponentially.
The expectation values of those states therefore must also converge. Similarly a band edge or
van Hove singularity in the PDOT will also correspond to unique initial and final many-body
states. For example, the band gap in a semiconductor corresponds to a hole quasiparticle
in the state at the top of the valence band and an electron quasiparticle in the state at the
bottom of the conduction band. Similarly in spin models with a gap, such as the § = 1
spin chain [33], there will be a threshold for transitions from the (unique)} ground state to
the first excited state. Provided that the first excited state is non-degenerate (or the first
excited state of a given symmetry is) then there will be a unique threshold transition and
we can construct the threshold operators and the initial- and final-state expectation values.
The only caveat is that the critical transition must have a finite weight in the spectrum of
the PDOT.

(66)
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8. Numerical and analytic applications

We have presented the natural generalization of the recursion method of Haydock and
co-workers to interacting systems. We have shown that the Liouville superoperator may
be recursively transformed into a tridiagonal form on a basis of localized orthonormal
operators. The transformation allows us to completely solve Heisenberg’s equation of
motion for a localized operator. The Taylor series expansion of the time evolution has a
finite radius of convergence and a well defined moment expansion exists, which corresponds
to a convergent continued fraction. These results contrast with the time dependence of the
many-body wavefunciions, where no well defined moment expansion exisis for extended
systems.

We have shown that there exists an important physical quantity, pg{w), which has the
property that it is exponentially insensitive to the distant parts of the system. In other words
the spectrum pgp(w) obeys a generalization of the black body theorem of von Laue. We
call this quantity the projected density of transitions (PDOT) since it is a sum of all the
possible transitions from initial to final many-body states weighted by their components
on a given local operator. The physical interpratation of the PDOT is rather subtle, but for
non-interacting systems it becomes the same as the projected density of states. In particular,
the singularities of the spectrum of pg(w) correspond to the long-lived and slow-moving
elementary excitations.

Additionally, we have pointed out that the invariant operators of the Liouvillian can be
expanded in products of the orthogonal polynomials for the PDOT with the operators which
tridiagonalize the Liouvillian. For critical transitions with unique initial and final states
these invariant operators consist of a transition operator between two stationary states of
the system. Expectation values in the initial or final state can be obtained by taking the
trace of the product of an observable with the invariant operator. The analogous expansion
of invariant states in products of orthogonal polynomials for the PDOS has been used for
non-interacting systems to obtain asymptotic properties such as localization [30].

QOur formalism has very close similarities to the Mori formalism [11], but has some
crucial differences. The Mori formalism gives continued fraction representations of
dynamical correlation functions among operators as a function of temperature, chemical
potential and so on. In contrast, the PDOT does not correspond to any particular choice
of temperature, or even a thermodynamic ensemble at all, but merely weights all possible
transitions which can occur in a given quantum system. This difference is most noticeable
in the different inner products used in the two formalisms: the Kubo inner product in the
Mori method compared to the trace norm used here. Although the trace norm can be viewed
as an infinite-temperature limit of the Kubo inner product, our interpretation of the PDOY
is quite different from a thermal correlation function. In our interpretation the trace norm
does not have direct physical significance, but is important mathematically in ensuring that
the PDOT obeys the black body theorem. Another difference is the key emphasis placed on
the locality of the operators in our method, which is not an important consideration in the
Mori formalism. Qur proofs of convergence of the continued fraction for local operators
and the black boedy theorem for the PDOT are also new as far as we know.

A great deal is already known from non-interacting models about possible behaviours
of the continued fraction expansions and projected density of states [32]. All of these
eatlier results can be taken over without change to the interacting case, once it is clear
that the PDOT obeys the back body theorem. Additionally, many numerical calculations
already exist using essentially the same formalism we have presented here. These earlier
calculations interpreted their results as corresponding to time-dependent correlations in the
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Mori formalism at infinite-temperature. In our interpretation, these previous results have
obtained the PDOT, which is an intrinsic property of the transitions in the system and not
specifically an infinite-temperature quantity. For example, in the one-dimensional X¥
and transverse Ising models the continued fraction parameters are known to all levels,
and thus the complete PDOT is known [25,26]. In more complex systems, such as the
one-dimensional Heisenberg model, the continued fraction parameters must be computed
numerically. In the 1D Heisenberg model 30 ‘infinite-temperature’ moments are known,
equivalent to a 15-level continued fraction [28]. Unfortunately a continued fraction of
this length is usually insufficient to reliably identify critical frequencies unless it becomes
clear how to extrapolate the continued fraction parameters. Also, for many of the important
many-body Hamiltonians, such as Hubbard and Heisenberg models, it will probably only be
possible to obtain a few continued fraction levels, since the number of operators generated
by repeated commutation with the Hamiltonian grows exponentially fast.

Recent developments in understanding the effects of numerical errors on the recursion
method {23] indicate that the computational approach can be extended far beyond what has
been done. Although the number of operators generated by the recursion can grow as fast as
a factorial, the errors generated by neglecting small components in the tridiagonal basis for
the Liouvillian do not accumulate. This means that, despite this rapid growth, interacting
Liouvillians can be tridiagonalized to far greater depth than previously thought, and the
resulting continued fractions should give a much more accurate PDOT. From Paige’s theorem
for the accuracy of Lanczos eigenvectors [34] it follows that the orthogonal polynomial
expansion for the invariant operators is also insensitive to the neglect of small components
during the widiagonalization.

In general, our method lacks a direct approach for defermining ground-state or
thermodynamic information about a given system. The exception is when a trapsition
corresponds to unique initial and final states, such as in a non-degenerate finite system, or
as 2 band edge or excitation threshold in an extended system. Somehow it would appear
that in general ground-state information should indeed be contained in this formalism, since
we have obtained a complete solution to Heisenberg’s equation of motion. One possibility
that we have explored is to construct “lowering’ operators, which are operators that lower
the energy of any state they act on. Presumably these operators should yield projection
operators that can project a given trial wavefunction onto the ground state, Such a lowering
operator is easily constructed from the orthonormal basis operators:

0
X" = f dwA(w) Y Pu(w)U, (67)
—co -
where A{w) is any arbitrary function. 1t is also possible to construct perturbation theories in
which a non-interacting model Liouvillian Lg is first tridiagonalized and then the interactions
V are introduced perturbatively. The perturbation theory for the resulting continued fraction
is identical to the conventional recursion method perturbation theory [10). However, such
topics are perhaps best left for a future paper.
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